Независимая Экспертиза Волгоград

Автооценка при ДТП

Ситуаций, при которых требуется автоэкспертиза – множество и порядок проведение автоэкспертизизы следует доверять профессионалам.

Подробнее...

Оценка бизнеса

Определение рыночной стоимости бизнеса включает в себя оценку всех активов...

Подробнее...

Экспертиза качества товаров

Проверка качества товаров народного потребления ( обувь, одежда, кожевенно-меховые, спортивные, галантерейные и пр. товары )

Подробнее...

Финансово-экономическая экспертиза

Финансово-экономические экспертизы назначаются для решения задач, касающихся финансовой деятельности предприятий, соблюдения законодательных актов...

Подробнее...

КОМПЛЕКСНАЯ МЕТОДИКА
ПО ОБСЛЕДОВАНИЮ И ЭНЕРГОАУДИТУ
РЕКОНСТРУИРУЕМЫХ ЗДАНИЙ

Пособие по проектированию

МДС 13-20.2004

Москва 2004


Экспертиза: смотреть раздел Оценка: смотреть раздел


Рецензент - зав. кафедрой строительных конструкций Московского института коммунального хозяйства и строительства, д-р. техн. наук, проф. Ю.Н. Хромец.

В работе изложены основные приемы и способы натурных обследований состояния эксплуатационной среды помещений. Подробно рассматриваются методы обследования железобетонных, металлических и деревянных конструкций, а также особенности обследований основных видов ограждающих конструкций (стен, покрытий и кровель, полов и т.д.). Описаны методы и средства измерений деформаций конструкций и наблюдения за трещинами. Даны методы теплотехнических исследований ограждающих конструкций. Указаны приборы и оборудование для определения физико-технических характеристик материалов.

Особое внимание в работе уделено методическим указаниям проведения энергоаудита зданий - выявлению теплотехнических характеристик ограждающих конструкций и обследованию инженерных систем зданий и технико-экономическому сравнению их эффективности. Проведение таких работ позволит выбрать оптимальное решение при реконструкции зданий с наименьшими энергозатратами при их дальнейшей эксплуатации.

Одним из важных моментов методики является новый раздел - обследование пожарной безопасности здания. В нем приведены основные положения обследования, целью которых является оценка выполнения требований противопожарной защиты зданий при их реконструкции. Рекомендован состав работ, необходимых как при оценке состояния конструкций и качества выполнения строительных противопожарных мероприятий, так и при оценке состояния инженерных систем и автоматических средств сигнализации и пожаротушения.

Приложения содержат большой перечень средств измерения при натурных обследованиях, нормативных и инструктивных материалов.

Данная Комплексная методика предназначена для специалистов проектно-изыскательских организаций, ее использование позволит усовершенствовать работу этих специалистов и повысить качество получаемых результатов натурных обследований.

ВВЕДЕНИЕ

В настоящее время имеется большое количество методик по инженерному обследованию зданий различного назначения, выпущенных различными организациями.

Несмотря на такое многообразие, все они имеют одно общее свойство - в них, как правило, рассматриваются только вопросы натурных обследований строительных конструкций зданий. Это связано с тем, что в период 70 - 90-х годов прошлого столетия заказчиками таких работ являлись различные производственные предприятия и задачей натурных обследований являлось, в основном, определение состояния несущих и ограждающих конструкций зданий. Результатами таких работ пользовались, как правило, эксплуатационные службы для проведения ликвидации аварийного состояния строительных конструкций.

В последние годы значительно вырос объем реконструкции и технического перевооружения предприятий, зданий и сооружений. При этом одной из главных задач является экономия материальных и энергетических ресурсов. Одной из особенностей современных натурных обследований стало более тесное сотрудничество с технологами, проектировщиками и специалистами по инженерному оборудованию зданий, а основными заказчиками и потребителями результатов работ стали инвесторы и проектные организации. В этом случае необходимый объем сведений можно получить при проведении только комплексных обследований, охватывающих более широкий круг вопросов.

В ряде случаев реконструкция зданий связана с их перепрофилированием. При этом в существующем объеме здания размещается новое технологическое оборудование, имеющее свои особенности. В этом случае помимо работ по определению несущей способности каркаса на новые нагрузки требуется определение фактической пожарной безопасности здания. Проведение такой работы необходимо и по причине существенных изменений в нормативной базе, что требует выявления соответствия объемно-планировочных и конструктивных решений здания, а также систем пожаротушения этим новым нормам.

Реконструкция здания с его надстройкой или другими изменениями объемно-планировочных решений требует также получения сведений о существующих системах инженерного оборудования. Это оценка состояния коммуникаций, обследования тепловых и энергетических вводов в здание, выявление соответствия существующих теплоэнергетических мощностей предполагаемым изменениям здания.

Появление еще одного нового вида обследовательских работ связано с проблемой экономного расходования тепло- и энергоресурсов. При реконструкции существующего здания эта проблема решается, в основном, двумя путями.

Первый - увеличение теплотехнических свойств ограждающих конструкций, соответствующих новым, более высоким нормативным требованиям.

Второй - совершенствование систем инженерного оборудования здания.

Выбор оптимального решения реконструкции здания с наименьшими энергозатратами при его эксплуатации достигается энергоаудитом - проведением теплотехнических обследований ограждающих конструкций и инженерных систем и технико-экономическим сравнением их эффективности.

Комплексные обследования реконструируемых зданий должны включать следующие разделы:

  • · обследование эксплуатационной среды;
  • · обследование состояния несущих и ограждающих конструкций;
  • · обследование систем инженерного оборудования и проведение энергоаудита;
  • · оценку противопожарной безопасности реконструируемого здания.

Исходя из такого широкого круга вопросов, решаемых при комплексном обследовании реконструируемых зданий, существенно изменяется и состав участников обследований. В этом случае группа обследователей тоже должна стать комплексной, т.е. в нее должны войти специалисты по изучению микроклимата помещений, инженеры по оценке состояния несущих и ограждающих конструкций, специалисты по обследованию систем инженерного оборудования и по противопожарной безопасности зданий.

При разработке Комплексной методики использованы материалы ряда институтов: НИИЖБа, ЦНИИСКа им. Кучеренко, ЦНИИпроектстальконструкции им. Мельникова, Харьковского НИИпроекта, ВНИИПО и других организаций.

Комплексная методика разработана под общей редакцией д-ра техн. наук проф. В.В. Гранева, д-ром техн. наук проф. А.Г. Гиндояном (разделы 1, 2, 3, 7), канд. техн. наук Л.Ф. Гольденгершем (раздел 5.3), канд. техн. наук В.И. Макарцевым (разделы 1, 3, 7), канд. техн. наук Т.Е. Стороженко (раздел 6) и канд. техн. наук Е.О. Шилькротом (разделы 2, 4, 5).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящая Комплексная методика предназначена для организаций и специалистов, осуществляющих инженерные обследования эксплуатируемых и реконструируемых зданий.

1.2. Комплексные обследования включают оценку:

  • · производственной среды (микроклимата) помещений;
  • · состояния несущих и ограждающих конструкций;
  • · состояния инженерных систем отопления, вентиляции и кондиционирования;
  • · противопожарной безопасности зданий;
  • · теплоэнергетического состояния (энергоаудит) зданий.

1.3. Методика может быть применена как для комплексного обследования зданий, так и для обследования отдельных элементов.

1.4. Общей целью обследования технического состояния строительных конструкций является выявление несущей способности и эксплуатационных качеств конструкций, степени их физического износа и причин, обусловливающих их состояние.

1.5. Целью проведения энергоаудита является получение данных о энергоресурсах потребления здания для технико-экономического обоснования оптимального решения реконструкции здания, отвечающего современным теплотехническим требованиям.

1.6. Целью обследования противопожарной безопасности здания является выявление соответствия выполненных строительных противопожарных мероприятий и противопожарных систем инженерного оборудования действующим нормам.

1.7. В зависимости от задач, определяемых техническим заданием заказчика, инженерные обследования зданий, как правило, включают:

  • · предварительные обследования, включающие сбор исходной информации для составления технического задания и договора с заказчиком;
  • · визуальное обследование условий эксплуатации конструкций, технического состояния строительных конструкций, инженерных и противопожарных систем по внешним признакам и составление ведомости дефектов;
  • · оценку производственной среды (микроклимата) помещений с точки зрения ее соответствия санитарно-гигиеническим требованиям;
  • · инструментальное обследование эксплуатационных качеств конструкций, инженерных и противопожарных систем;
  • · обобщение результатов и составление отчета (заключения) по работе.

1.8. Основными задачами предварительного обследования являются определение общего состояния элементов здания или здания в целом, определение состава намечаемых работ и сбор исходных данных, необходимых для заключения договора с заказчиком.

1.9. Состав работ по предварительному обследованию включает:

  • · общий осмотр объекта;
  • · общие сведения о здании, времени строительства, сроках эксплуатации;
  • · общие характеристики объемно-планировочного, конструктивных решений здания, инженерных и противопожарных систем и инженерного оборудования;
  • · изучение материалов ранее проводившихся на объекте обследований по ремонту, усилению и восстановлению эксплуатационных качеств строительных конструкций, инженерных и противопожарных систем;
  • · выявление объема имеющейся проектной документации.

1.10. В состав детального инструментального обследования в зависимости от состояния зданий, а также задач, установленных техническим заданием, рекомендуется включать:

  • · обмерные работы по зданию;
  • · измерение параметров эксплуатационной среды здания;
  • · оценку технического состояния строительных конструкций и их элементов по их характерным и детальным признакам повреждений и дефектов;
  • · определение прочностных и теплотехнических характеристик материалов основных строительных конструкций;
  • · отбор образцов материалов строительных конструкций и их лабораторные испытания;
  • · фотофиксацию и составление карт повреждений и дефектов строительных конструкций;
  • · оформление обмерных и других графических материалов;
  • · анализ полученных результатов обследования и составление заключения (отчета).

1.11. В состав детального инструментального обследования инженерных и противопожарных систем зданий рекомендуется включать следующие работы:

  • · обмерные;
  • · измерение геометрических параметров инженерных систем;
  • · оценку технического состояния инженерных систем, составление карт повреждений и дефектов;
  • · анализ полученных результатов детального обследования и составление заключения (отчета).

1.12. При проведении обследований здания или его отдельных элементов с заказчиком согласовываются меры по обеспечению безопасности ведения работ (устройство подмостей и приспособлений для доступа к обследуемым конструкциям, освещения затемненных участков и т.п.), проводится инструктаж специалистов, ответственных за технику безопасности на обследуемом объекте.

2. ОБСЛЕДОВАНИЯ ЭКСПЛУАТАЦИОННОЙ СРЕДЫ ЗДАНИЙ

2.1. Обследование воздушно-теплового режима здания

2.1.1. Целью данных обследований является выявление основных факторов, определяющих эксплуатационную среду помещений.

2.1.2. Задачи натурных обследований:

  • · измерение параметров воздушного и теплового микроклимата в обслуживаемой (рабочей) зоне и проверка их соответствия гигиеническим и технологическим нормативам;
  • · измерение параметров воздушно-теплового режима (ВТР), составление воздушно-теплового баланса (ВТБ), определение энергетических затрат здания и их составляющих.

2.1.3. В зависимости от объема поставленных задач натурные обследования могут быть полными, включающими весь состав работ по всему зданию, или частичными по ряду направлений работ или на отдельных участках здания.

2.1.4. Измерение показателей микроклимата, температуры, влажности и скорости движения воздуха и результирующей температуры в помещениях жилых и общественных зданий следует проводить во время их функционирования, учитывая заполняемость помещения, работу бытовых приборов, офисной техники, наличие посетителей и т.п.

2.1.5. Измерение температуры и скорости движения воздуха следует проводить в обслуживаемой зоне на высоте:

  • · 0,1; 0,4 и 1,7 м от поверхности пола - для детских дошкольных учреждений;
  • · 0,1; 0,6 и 1,7 м от поверхности пола - при пребывании людей в помещении преимущественно в сидячем положении;
  • · 0,1; 1,1 и 1,7 м от поверхности пола - в помещениях, где люди преимущественно стоят или ходят;
  • · в центре обслуживаемой зоны и на расстоянии 0,5 м от внутренней поверхности наружных стен и стационарных отопительных приборов - в помещениях, указанных в таблице 2.1.

Измерение относительной влажности воздуха следует проводить в центре помещения на высоте 1,0 м от поверхности пола.

В помещениях площадью более 200 м2 измерение температуры, влажности и скорости движения воздуха следует проводить на равновеликих участках, площадь которых должна быть не более 100 м2.

Таблица 2.1 - Места проведения измерений

Вид зданий Выбор помещения Место измерения
Одноквартирные Не менее чем в двух комнатах площадью более 5 м2 каждая, имеющих две наружные стены или комнаты с большими окнами, площадь которых составляет 30 % и более площади наружных стен В центре плоскостей, отстоящих от внутренней поверхности наружной стены и отопительного прибора на 0,5 м и в центре помещения (точке пересечения диагональных линий помещения) на высоте, указанной в п. 4.3
Многоквартирные Не менее чем в двух комнатах площадью более 5 м2 каждая в квартирах на первом и последнем этажах
Гостиницы, мотели, больницы, детские учреждения, школы В одной угловой комнате 1-го или последнего этажа
Другие общественные и административно-бытовые В каждом представительном помещении То же, в помещениях площадью 100 м2 и более измерения осуществляются на участках, размеры которых регламентированы в п. 4.3

2.1.6. Измерение показателей микроклимата в помещениях производственных зданий следует проводить, учитывая все факторы, влияющие на микроклимат рабочих мест (фазы технологического процесса, функционирование систем вентиляции и отопления и др.). Измерения следует проводить не менее 3 раз в смену (в начале, середине и в конце). При колебаниях показателей микроклимата, связанных с технологическими и другими причинами, необходимо проводить дополнительные измерения при наибольших и наименьших величинах термических нагрузок на работающих.

2.1.7. Время начала измерений следует выбирать не ранее чем через 2 ч после начала рабочей смены. Период измерений должен соответствовать стабильной работе технологического оборудования и систем отопления, вентиляции и кондиционирования воздуха. Особенности режима работы (технологические циклы, въезд и выезд транспорта и т.п.) производства должны фиксироваться во времени.

2.1.8. Измерения показателей микроклимата следует проводить на рабочих местах. Если рабочим местом являются несколько участков производственного помещения, то измерения осуществляются на каждом из них.

При наличии источников локального тепловыделения, охлаждения или влаговыделения (нагретых агрегатов, окон, дверных проемов, ворот, открытых ванн и т. д.) измерения следует проводить на каждом рабочем месте, минимально и максимально удаленном от источников термического воздействия.

При работах, выполняемых сидя, температуру и скорость движения воздуха следует измерять на высоте 0,1 и 1,0 м, а относительную влажность воздуха - на высоте 1,0 м от пола или рабочей площадки. При работах, выполняемых стоя, температуру и скорость движения воздуха следует измерять на высоте 0,1 и 1,5 м, а относительную влажность воздуха - на высоте 1,5 м.

При наличии источников лучистого тепла тепловое облучение на рабочем месте необходимо измерять от каждого источника, располагая приемник прибора перпендикулярно падающему потоку. Измерения следует проводить на высоте 0,5; 1,0 и 1,5 м от пола или рабочей площадки.

В помещениях с большой плотностью рабочих мест при отсутствии источников локального тепловыделения, охлаждения или влаговыделения участки измерения температуры, относительной влажности и скорости движения воздуха должны распределяться равномерно по площади помещения в соответствии с таблицей 2.2.

Таблица 2.2 - Минимальное количество участков измерения температуры, относительной влажности и скорости движения воздуха

Площадь помещения, м2 Число участков измерения
До 100 4
От 100 до 400 8
Св. 400 Количество участков определяется расстоянием между ними, которое не должно превышать 10 м

2.1.9. Температуру внутренней поверхности tпов стен, перегородок, пола, потолка следует измерять в центре соответствующей поверхности.

2.1.10. Результирующую температуру помещения следует измерять шаровым термометром или вычислять по следующим формулам:

tрез = 0,5tB + 0,5tпов - при скорости движения воздуха менее 0,2 м/с;

tрез = 0,6tB + 0,4tпов - при скорости движения воздуха от 0,2 м/с до 0,6 м/с.

Измерения результирующей температуры помещения или температуры воздуха при расчете результирующей температуры проводят в центре помещения на высоте 0,6 м от поверхности пола для помещений с пребыванием людей в положении сидя и на высоте 1,1 м в помещениях с пребыванием людей в положении стоя. Описание шарового термометра приведено в приложении 7.

2.1.11. Локальную асимметрию результирующей температуры следует вычислять для точек, указанных в 2.1.5, по формуле

tш = tш1 + tш2,

где tш1 и tш2 - температуры, °С, измеренные в двух противоположных направлениях шаровым термометром.

2.1.12. Показатели микроклимата в помещениях следует измерять приборами, прошедшими регистрацию и имеющими соответствующий сертификат и свидетельство о поверке.

Диапазон измерения и допустимая погрешность измерительных приборов должны соответствовать требованиям таблицы 2.3.

Таблица 2.3 - Требования к измерительным приборам

Наименование показателя Диапазон измерения Предельное отклонение
Температура воздуха по сухому термометру, °С -30 - 50 ±0,2
Температура воздуха по смоченному термометру, °С 0 - 50 ±0,2
Температура поверхности, °С 0 - 50 ±0,2
Результирующая температура, °С 5 - 40 ±0,2
Относительная влажность, % 0 - 90 ±5
Скорость движения воздуха, м/с 0 - 0,5; > 0,5 ±0,05; ±0,1
Интенсивность теплового облучения, Вт/м2 10 - 350 > 350 ±5,0 ±50

2.1.13. Температуру и относительную влажность воздуха при наличии источников теплового излучения и воздушных потоков на рабочем месте, как правило, следует измерять аспирационными психрометрами. При отсутствии в местах измерения лучистого тепла и воздушных потоков температуру и относительную влажность воздуха можно измерять психрометрами, не защищенными от воздействия теплового излучения и скорости движения воздуха. Могут использоваться также приборы, позволяющие раздельно измерять температуру и влажность воздуха.

Скорость движения воздуха следует измерять крыльчатыми анемометрами. Малые величины скорости движения воздуха (менее 0,5 м/с), особенно при наличии разнонаправленных потоков, можно измерять термоэлектроанемометрами, а также цилиндрическими и шаровыми кататермометрами при защищенности их от теплового излучения. Температуру поверхностей следует измерять контактными (типа электротермометров) или дистанционными (пирометры и др.) приборами.

Интенсивность теплового облучения следует измерять приборами, обеспечивающими угол видимости датчика, близкий к полусфере (не менее 160°), и чувствительными в инфракрасной и видимой области спектра (актинометры, радиометры и т. д.).

2.1.14. В процессе выполнения обследования воздушной среды в помещении должны непрерывно регистрироваться температура и относительная влажность наружного воздуха, скорость и направление ветра. Измерения скоростей и направлений ветра должны производиться вне зон аэродинамической тени строений, где возможно образование местных потоков воздуха на высоте 1,5 м от земной поверхности или не менее 2 м над наиболее высоким участком кровли.

Скорость ветра измеряют с помощью чашечного анемометра. Направление ветра определяют флюгером. Допускается определение производственного направления с помощью тонкой ленты длиной 1,5 - 2 м, прикрепленной к шесту. Результаты измерений температур и влажности наружного воздуха, скоростей и направлений ветра сопоставляются с данными наблюдений ближайших метеостанций за период проведения натурных обследований и среднемесячными многолетними. Указанные данные наблюдений метеостанций, а также другие необходимые климатические характеристики района могут быть получены непосредственно на метеостанциях, из периодических изданий и справочников, а также из СНиП 23-01.

2.1.15. Результаты измерений температур и относительной влажности заносятся в таблицу 2.4, по данным которой подсчитываются все показатели, получаемые при обработке данных измерений (средние арифметические, абсолютные, суточные и часовые амплитуды, средние квадратические отклонения и т.д.).

Таблица 2.4 - Форма таблицы для записи результатов измерений температуры tB, относительной влажности jB воздуха и температуры tR в помещениях

Дата Время суток, ч, мин № сечений и пунктов измерений Результаты измерения Примечание
tсух, °С tвл, °С j, °С tR, °С
1 2 3 4 5 6 7 8








В зависимости от температуры и относительной влажности воздуха температурно-влажностный режим помещения в холодный период года подразделяется на сухой, нормальный, влажный и мокрый (таблица 2.5).

2.1.16. Результаты измерений параметров микроклимата сопоставляются с нормативными требованиями, на этой основе дается оценка параметров микроклимата и при необходимости разрабатываются рекомендации и мероприятия по обеспечению нормируемых параметров микроклимата.

Таблица 2.5 - Классификация температурно-влажностного режима помещений

Характеристика режима помещений Параметры внутреннего воздуха
Температура, °С Относительная влажность, % Парциальное давление пара, кПа
1. Сухой с температурой:


пониженной До 12 До 60 До 0,7
нормальной От 12 до 24 » 50 От 0,7 до 1,5
повышенной 24 и выше » 40 Выше 1,5
2. Нормальный с температурой:


пониженной До 12 От 60 до 75 До 0,84
нормальной От 12 до 24 » 50 » 60 От 0,84 до 1,8
повышенной 24 и выше » 40 » 50 Выше 1,8
3. Влажный с температурой:


пониженной До 12 75 и выше До 1,05
нормальной От 12 до 24 От 60 до 75 От 1,05 до 2,23
повышенной 24 и выше » 50 » 60 Выше 2,23
4. Мокрый с температурой:


пониженной До 12 85 и выше До 1,18
нормальной От 12 до 24 От 75 до 85 От 1,18 до 2,38
повышенной 24 и выше » 60 » 75 Выше 2,38

Пояснение к заполнению таблицы 2.4. для производственных зданий:

в графе 3 указывается также расположение точек измерений относительно технологического оборудования;

в графе 8 указываются стадия технологического процесса, расположение и состояние агрегатов (например, «заслонка печи открыта») и другие особенности обстановки измерений.

2.1.17. По результатам обследования необходимо составить протокол, в котором должны быть отражены общие сведения об объекте, размещении технологического и санитарно-технического оборудования, источниках тепловыделения, охлаждения и влаговыделения, приведены схема размещения участков измерения параметров микроклимата и другие данные.

В протокол включают план помещения с нанесенными измеренными параметрами микроклимата: температуру воздуха, его относительную влажность и скорость движения, при необходимости тепловое излучение. Соединяя плавными линиями точки на плане с равными значениями параметров микроклимата, строятся поля температур, влажности и др. При построении этих линий допускается интерполяция замеренных параметров. Рекомендуется следующий шаг линий:

  • · температура воздуха - 2 °С;
  • · относительная влажность - 10 %;
  • · скорость движения - 0,1 м/с;
  • · тепловое излучение - 10 Вт/м2.

Вычисляется площадь обслуживаемой (рабочей) зоны, в пределах которой соблюдаются нормативные параметры микроклимата по каждому из параметров:

Ft - по температуре; Fвл - по влажности; Fv - по скорости, Fизл - по тепловому излучению.

В заключение протокола должна быть дана оценка результатов выполненных измерений на соответствие нормативным требованиям.

2.1.18. В ряде случаев требуется составление воздушно-теплового баланса здания и его составляющих.

2.1.19. Для составления воздушно-теплового баланса здания в целом или отдельных его помещений следует провести измерения с целью определения фактических тепло- и воздухообменов и соответствующие расчеты по формулам (1) - (4) приложения 8.

Точность составления воздушно-теплового баланса определяется, в основном, точностью проведения измерений и их продолжительностью. Как правило, целесообразно проведение мониторинга воздушно-теплового баланса в течение нескольких недель при различных технологических режимах объекта и различных температурах наружного воздуха.

2.1.20. Тепло, подводимое к зданию от внешних источников QΣ, и тепло, расходуемое системой горячего водоснабжения Qгв, следует измерять приборами учета тепла и воды, установленными в здании. Если такие приборы отсутствуют, следует провести необходимые измерения переносными портативными ультразвуковыми расходомерами (см. приложение 7).

2.1.21. Потери тепла через наружные ограждения здания Qмн следует рассчитывать по формуле (2) приложения 8.

Входящие в формулу параметры определяются следующим образом:

ki - средний коэффициент теплопередачи через i-ю ограждающую конструкцию здания (стена, окно, покрытие и т.д.), измеряется или рассчитывается в соответствии с конструктивными элементами ограждения;

Fi -   площадь поверхности ограждающей конструкции, измеряется или определяется по чертежам;

tB -   температура внутреннего воздуха, измеряется на момент проведения испытаний в обслуживаемой зоне и под перекрытием (под покрытием) здания на расстоянии 0,25 - 0,30 м от нижней поверхности конструкции.

2.1.22. Потери тепла инфильтрацией Qинф следует рассчитывать по формуле (3) приложения 8.

Входящие в формулу параметры определяются следующим образом:

Lинф - расход инфильтрационного воздуха, рассчитывается по формуле

,

где DPi -    разность статических давлений с внешней внутренней стороны ограждающей конструкции, Па, через неплотности в которой происходит инфильтрация наружного воздуха, измеряемая микроманометром или рассчитываемая в зависимости от разности температур наружного и внутреннего воздуха и скорости ветра;

F)i -    эквивалентная площадь неплотностей в ограждающей конструкции, м2, принимаемая в зависимости от типа конструкции или устанавливаемая по результатам эксперимента по следующей методике.

При проведении испытаний в теплый период года:

  • · закрывают все открывающиеся проемы в наружных ограждениях;
  • · включают все установки вытяжной вентиляции на максимальную производительность и измеряют ее величину Gуд;
  • · измеряют DPрз - разность статических давлений внутри здания (помещения) и снаружи на уровне рабочей (обслуживаемой) зоны;
  • · суммарная эквивалентная площадь неплотностей в ограждающих конструкциях здания (μF)зд рассчитывается по формуле

.

При проведении испытаний в холодный период года:

  • · испытания проводят при работающей системе отопления и сбалансированных режимах работы приточной и вытяжной систем механической вентиляции;
  • · измеряют температуру наружного воздуха и температуру внутреннего воздуха, среднюю по высоте Dt;
  • · измеряют расстояние между серединами окон в нижней и верхней зонах помещения h;
  • · измеряют разность статических давлений внутри здания (помещения) при открытых DPрз1 и закрытых DРрз2 воротах или любом другом большом проеме в наружных стенах или фонаре здания площадью F0;
  • · принимают значения коэффициента расхода воздуха в открытом проеме μпр равным 0,64 (при острых кромках проема) или 0,8 (при скругленных кромках);
  • · эквивалентная площадь неплотностей в ограждающих конструкциях здания в верхней зоне рассчитывается по формуле

;

в нижней зоне

,

где ;

.

2.1.23. Расход тепла на вентиляцию QВЕН следует рассчитывать по формуле (4) приложения 8.

Входящие в формулу параметры определяются следующим образом:

L -  расход воздуха систем приточной вентиляции, измеряется при проведении обследования систем вентиляции и кондиционирования воздуха;

tB -  температура воздуха, удаляемого системами вытяжной вентиляции, механической, естественной, местными отсосами, измеряется при проведении обследования систем вентиляции и кондиционирования воздуха. В расчет принимается средневзвешенная (по массовому расходу воздуха) температура.

Kt -   коэффициент эффективности воздухообмена, рассчитывается по формуле

,

где tпр - температура приточного воздуха;

tуд - температура удаляемого воздуха.

2.2. Обследование освещенности помещений

2.2.1. Требуемый уровень освещенности помещения зависит от назначения помещения, характера выполнения зрительной работы и регламентируется СНиП 23-05. Помещения с постоянным пребыванием людей должны иметь, как правило, естественное освещение.

2.2.2. Освещенность помещения естественным светом характеризуется коэффициентом естественной освещенности (КЕО) ряда точек, расположенных в пересечениях двух плоскостей: вертикальной плоскости характерного разреза помещения и плоскости, принимаемой за условную рабочую плоскость помещения. Естественное освещение в какой-либо точке М помещения характеризуется КЕО.

Он определяется как отношение естественной освещенности в некоторой точке заданной плоскости внутри помещения Ем светом неба (непосредственно или после отражений) к значению в тот же момент времени наружной горизонтальной освещенности Ен, создаваемой светом равнояркого небосвода, что характерно для условий сплошной облачности

.

Неравномерность естественного освещения характеризуется соотношением наибольшего и наименьшего значений КЕО, определенных по кривой его распространения в пределах характерного разреза помещения.

Характерный разрез помещения - поперечный разрез по середине помещения, плоскость которого перпендикулярна плоскости остекления световых проемов (при боковом освещении) или продольных осей пролетов помещения (при верхнем освещении). В характерный разрез помещения должны попадать участки, наиболее загруженные оборудованием, а также рабочие зоны, наиболее удаленные от световых проемов.

Условная рабочая поверхность - условно принятая горизонтальная поверхность, расположенная на высоте 0,8 м от пола.

Рабочая поверхность - поверхность, на которой производится работа и на которой нормируется и измеряется освещенность (например, поверхность стола верстака) части оборудования.

2.2.3. В помещениях с боковым освещением нормируется минимальное значение КЕО(eм) в пределах рабочей зоны, а с верхним или комбинированным освещением - среднее значение КЕО (еср) в пределах рабочей зоны, определяемое по формуле

,

где п -    количество точек измерений освещенности (не менее 5);

l1, l2, ln -    значения КЕО в отдельных точках, находящихся на равных расстояниях друг от друга.

2.2.4. Измерения освещенности необходимо произвести в точках характерного разреза помещения. При этом точки замеров (не менее 5) следует принимать на равных расстояниях друг от друга, располагая первую и последнюю точки на расстоянии 1 м от стен (или осей средних рядов колонн).

В обследуемом помещении намечается ряд характерных разрезов, перпендикулярно расположенных к продольной стене с оконными проемами. Для возможности построения изолиний расстояние между сечениями назначается в пределах 6 - 12 м. Каждый характерный разрез помещения разбивается на ряд точек через 2 - 4 м.

2.2.5. Измерения наружной освещенности следует проводить синхронно с измерениями ее внутри помещения. Наружная освещенность определяется на горизонтальной поверхности, не затененной близко расположенными зданиями. Необходимо следить, чтобы во время измерения на датчик не падала тень от расположенных вблизи предметов или от оператора, производящего измерения.

2.2.6. Измерение освещенности производится при помощи люксметров типа Ю-16 или Ю-18. Они состоят из фотоэлемента и измерителя силы тока. Электрический ток создается фотоэлементом, он пропорционален его освещенности.

Измерительное устройство, градуированное в люксах, показывает значение освещенности в люксах.

2.2.7. В начале и конце измерений производится сравнение показаний люксметров, измеряющих внутреннюю и наружную освещенность, и определяется коэффициент сравнения К. Для его определения приемники люксметров устанавливают рядом внутри помещения и записывают показания приборов.

Коэффициент сравнения определяется из соотношения

,

где J1 и J2 - показания люксметров.

Аналогичные сравнения люксметров производятся в условиях наружного освещения.

2.2.8. Одновременно с естественной освещенностью помещения определяются коэффициенты светопропускания стекол или других светопропускающих материалов световых проемов.

Коэффициент светопропускания стекла определяется как частное от деления поверхностной плотности светового потока, прошедшего на внутреннюю поверхность остекления, на поверхностную плотность светового потока, падающего на наружную поверхность. Измерения производятся путем одновременного прикладывания датчиков люксметров к наружной и внутренней поверхностям стекол. Для этого выбирается не менее трех светопроемов в каждой характерной (по высоте и в плане) зоне помещений.

Коэффициенты светопропускания измеряются для загрязненных стекол и после очистки их поверхности. Для каждого случая производятся три измерения.

Помимо результатов замеров могут приводиться также сведения о продолжительности эксплуатации остекления после очередной очистки, толщине слоя льда, инея, пыли или копоти на поверхности стекол.

2.2.9. По данным измерений на плане помещений строятся изолюксы и кривые горизонтальной освещенности по сечениям помещения.

К таблицам и графикам с результатами измерений прикладывается карта обследования, содержащая следующие данные: размеры обследуемого помещения; состояние стен, потолков (степень загрязнения); окраска (светлая, темная); краткое описание процесса в аспекте выделения пыли, газов, пара; характеристика зрительной работы, продолжительность пребывания людей на рабочих местах.

2.2.10. По результатам измерений производится сравнение оснащенности в натуре с данными расчета и делается заключение о соответствии условий естественного освещения требованиям СНиП 23-05.

2.3. Обследование химической агрессивности производственной среды

2.3.1. Нормируемые параметры производственной среды зданий промышленных предприятий в зависимости от их функционального назначения регламентируются ГОСТ Р 21.1501, СНиП II-3, СНиП 2.04.05 и отраслевыми инструктивно-нормативными документами.

2.3.2. Степень агрессивности производственных сред на строительные конструкции зависит от характера среды (газо-воздушная, жидкая, твердая), условий эксплуатации (внутри отапливаемого и неотапливаемого помещений или на открытом воздухе), группы газов (А, В, С или Д), температурно-влажностного режима помещений, вида и концентрации агрессивных реагентов, вида материалов и строительных конструкций.

2.3.3. Степень воздействия агрессивных сред на строительные конструкции определяется:

  • · для газовых сред - видом и концентрацией газов, растворимостью газов в воде, относительной влажностью и температурой;
  • · для жидких сред - наличием и концентрацией агрессивных агентов, насыщенностью воды газами, водородным показателем рН, величиной напора или скоростью движения жидкости у поверхности конструкций;
  • · для твердых сред (соли, аэрозоли, пыли, грунты) - дисперсностью, растворимостью в воде, гигроскопичностью, влажностью и температурой окружающей среды.

2.3.4. Состав работ и методика измерения вредных веществ в производственной среде должны соответствовать требованиям ГОСТ Р 21.1501-92, ГОСТ 12.1.016.

2.3.5. При обследованиях производственной среды следует выявить основные источники агрессивных выделений, определить вид, концентрацию, температуру, интенсивность и пределы распространения последних. Затем устанавливаются причины выделения вредностей и составляется перечень конструкций, подвергающихся воздействию данного реагента. Целесообразно все виды обследований производственной среды совмещать по времени, что позволяет получить наиболее полную характеристику эксплуатационной среды.

Изучение степени агрессивности эксплуатационной среды, загазованности и запыленности воздуха помещений проводится в теплый и холодные периоды года, в разное время суток, в зависимости от режима эксплуатации технологического оборудования. Отбор проб следует произвести в рабочей зоне, в зоне расположения обследуемых конструкций, под перекрытиями и покрытием, в зоне аэрационных и вентиляционных устройств и вблизи технологических источников выделения вредностей.

2.3.6. Инструментальными замерами необходимо зафиксировать пики выделений вредностей и их повторяемость во времени. При циклическом характере технологического процесса пробы отбираются в наиболее характерные периоды для данного вида производства: при максимальных и минимальных выделениях (с указанием длительности цикла и его частоты) и в течение технологического этапа, наиболее продолжительного.

В момент отбора проб необходимо регистрировать температуру и относительную влажность внутреннего воздуха, а также отмечать все отклонения и изменения в ходе технологического процесса.

Полученные по характерным участкам помещения данные о наличии агрессивных реагентов в производственном помещении и их воздействии на различные строительные конструкции заносятся в таблицу.

2.3.7. В зависимости от степени агрессивности эксплуатационной среды и материала конструкции разрабатываются мероприятия по защите строительных конструкций от коррозии согласно рекомендациям СНиП 2.03.11 и других документов.

3. ОБСЛЕДОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

3.1. Обмерные работы

3.1.1. Целью обмерных работ является выявление действительных геометрических размеров здания в целом и его отдельных конструкций и установление их соответствия проектным данным. При отсутствии проектной документации на основе обмерных работ разрабатывается проектная документация на здание и его основные элементы.

3.1.2. Состав и количество обмерных работ устанавливаются на этапе предварительного обследования и зависят от задач обследования, наличия проектной документации, проведенных ранее реконструкций здания и отдельных конструкций и т.д.

3.1.3. Обмерами определяются конфигурация, размеры, положение в плане и по вертикали конструкций и их элементов. Должны быть проверены основные размеры конструктивной схемы здания: длины пролетов, шаги и высоты колонн, сечения конструкций, узлы опирания балок и другие геометрические параметры.

При проведении обмерных работ следует соблюдать требования ГОСТ 26433, ГОСТ 26433.1.0, регламентирующих систему обеспечения точности и правил выполнения измерений обследуемых параметров.

3.1.4. Для обмеров отдельных конструкций и их элементов используются рулетки, деревянные складные рейки с нанесенными на них делениями, наборы металлических линеек и угольников разной длины, штангенциркули, уровни, отвесы, а для проведения линейных измерений здания - лазерные дальномеры и другие современные измерители длины.

3.1.5. Обмерные чертежи выполняются в масштабе 1:100 - 1:200, чертежи фрагментов и узлов - в масштабе от 1:50 до 1:5. В процессе натурных обследований результаты обмеров наносятся на предварительно подготовленные копии рабочих чертежей проекта здания или на эскизы для последующего изготовления обмерных чертежей.

Размеры и высотные отметки конструкций проставляются на обмерных чертежах в соответствии с правилами оформления архитектурно-строительных рабочих чертежей (ГОСТ Р 21.1501).

Измерения прогибов и деформаций

3.1.6. Деформации и прогибы в конструкциях возникают вследствие перегрузок, неравномерной осадки фундаментов, пучения грунтов оснований, температурных воздействий при изменении уровня грунтовых вод и влажностного режима грунтов оснований, потерь устойчивости несущих конструкций и других внешних воздействий. Нередко характер развития деформаций конструкций может свидетельствовать о причинах, их обусловливающих.

Допустимые пределы деформаций и прогибов зависят от материала и вида конструкций и регламентируются нормами проектирования конструкций зданий.

3.1.7. Отклонения от вертикали и искривления в вертикальной плоскости конструкций могут быть измерены с помощью отвеса и линейки. Смещения по горизонтали от опорных точек, а также вертикальные перемещения определяются измерениями с помощью приборов: теодолита Т-1, лазера «LM200», лазерного нивелира «PLS3-set».

3.1.8. Величины прогибов, искривлений конструкций и их элементов измеряются тонкой проволокой, располагаемой между краями конструкции или ее частями, не имеющими деформации, и измерением максимального расстояния между проволокой и поверхностью конструкции с помощью линейки.

Величины прогибов могут быть определены также с помощью прогибомера П-1 и гидростатического уровня.

При использовании прогибомеров измеряется величина перемещения элемента, закрепленного на деформирующемся участке конструкции, относительно неподвижного элемента. В качестве прогибомера могут быть использованы две планки или система, передающая перемещения от недеформируемой конструкции на измерительный прибор, в качестве которого обычно используется индикатор часового типа (мессура).

При малых линейных деформациях измерение прогибов элементов производится при помощи тензометров, а сдвиги и повороты - геодезической съемкой.

3.1.9. Деформацию перекрытий определяют прогибомером или нивелиром НВ-1 со специальной насадкой.

Перед началом замеров шток устанавливают в такое положение, чтобы показания в мерной трубке соответствовали нулю. Затем трубку с диском передвигают по поверхности потолка; через каждый полный поворот диска снимают отсчеты по мерной трубке. Прогибы замеряют в различных точках потолка.

Таким же образом прогибомером П-1, нивелиром НВ-1 измеряют прогибы несущих элементов лестниц - балок, маршей и плит.

3.1.10. Определение кинетики развития деформаций осуществляется путем многократных их измерений через определенные интервалы времени (от 1 до 30 сут) в зависимости от скорости развития деформации.

3.1.11. Наблюдения за деформациями зданий и сооружений, находящихся в эксплуатации, проводят в случаях появления трещин, раскрытия швов, перемещения и наклона строительных конструкций, а также резкого изменения условий эксплуатации. Цель наблюдения за деформациями состоит в том, чтобы установить, стабилизировались или продолжают развиваться осадки здания и изменения в конструкциях.

Если в процессе наблюдения не были выявлены основные и наиболее вероятные причины деформаций, то наблюдения продолжают вести длительное время (до года).

3.1.12. Для измерений деформаций, осадок, кренов, сдвигов зданий, сооружений и их конструкций применяют методы инженерной геодезии. Измерения производятся специализированными организациями в соответствии с рекомендациями «Руководства по наблюдениям за деформациями зданий и сооружений» (НИИОСП им. Герсеванова, М.: Стройиздат, 1975).

Методы и средства наблюдения за трещинами

3.1.13. При обследовании строительных конструкций наиболее ответственным этапом является выявление трещин и причин их возникновения, а также динамики развития. Трещины могут быть вызваны разными причинами и иметь различные последствия.

3.1.14. При наличии трещин в несущих конструкциях зданий и сооружений необходимо установить систематическое наблюдение за их состоянием и возможным развитием с тем, чтобы выяснить характер деформаций конструкций и степень их опасности для дальнейшей эксплуатации.

Наблюдение за развитием трещин проводится по графику, который в каждом отдельном случае составляется в зависимости от конкретных условий.

3.1.15. Трещины выявляются путем осмотра поверхностей конструкций, а также выборочного удаления с конструкций защитных или отделочных покрытий. Следует определить положение, форму, направление, распространение по длине, ширину и глубину раскрытия, а также установить, продолжается или прекратилось их развитие.

3.1.16. На каждой трещине устанавливают маяк, который при развитии трещины разрывается. Маяк устанавливают в месте наибольшего развития трещины.

При наблюдениях за развитием трещин по длине концы трещин во время каждого осмотра фиксируются поперечными штрихами, нанесенными краской или острым инструментом на поверхности конструкции. Рядом с каждым штрихом проставляют дату осмотра. Расположение трещин схематично наносят на чертежи общего вида развертки стен здания, отмечая номера и дату установки маяков. На каждую трещину составляют график ее развития и раскрытия.

Трещины и маяки в соответствии с графиком наблюдения периодически осматриваются, и результаты осмотра заносятся в журнал, в котором указываются: дата осмотра, чертеж с расположением трещин и маяков, сведения о состоянии трещин и маяков, сведения об отсутствии или появлении новых трещин и установка на них маяков.

3.1.17. Ширину раскрытия трещин рекомендуется определять с помощью микроскопа МПБ-2 с ценой деления 0,02 мм, пределом измерения 6,5 мм и микроскопа МИР-2 с пределами измерений от 0,015 до 0,6 мм, а также лупы с масштабным делением (лупы Бриннеля) или других приборов и инструментов, обеспечивающих точность измерений не ниже 0,1 мм.

Глубину трещин устанавливают, применяя иглы и проволочные щупы, а также при помощи ультразвуковых приборов типа УКВ-1М, бетон-3М, УК-10П и др.

3.1.18. При применении ультразвукового метода глубина трещины устанавливается по изменению времени прохождения импульсов как при сквозном прозвучивании, так и методом продольного профилирования при условии, что плоскость трещинообразования перпендикулярна линии прозвучивания. Глубина трещины определяется из соотношений:

;

,

где h - глубина трещины;

V - скорость распространения ультразвука на участке без трещин, мк/с;

ta, te - время прохождения ультразвука на участке без трещины и с трещиной, с;

a - база измерения для обоих участков, см.

3.1.19. Для оценки деформации и развития трещин следует использовать маяки, позволяющие установить качественную картину деформации и их величину.

Маяк представляет собой пластинку длиной 200 - 250 мм, шириной 40 - 50 мм, толщиной 6 - 10 мм из гипса или цементно-песчаного раствора, наложенную поперек трещины, или две стеклянные или металлические пластинки с закрепленным одним концом, каждая по разные стороны трещины. Разрыв маяка или смещение пластинок по отношению друг к другу свидетельствует о развитии деформаций.

Наиболее простое решение имеет пластинчатый маяк. Он состоит из двух металлических, стеклянных или плексигласовых пластинок, имеющих риски и укрепленных на растворе так, чтобы при раскрытии трещины пластинки скользили одна по другой. Края пластинок должны быть параллельны друг другу. После прикрепления пластинок к конструкции отмечают на них номер и дату установки маяка. По замерам расстояния между рисками определяют величину раскрытия трещины.

Маяк устанавливают на основной материал стены, удалив предварительно с ее поверхности штукатурку. Рекомендуется размещать маяки также в предварительно вырубленных штрабах (особенно при их установке на горизонтальную или наклонную поверхность). В этом случае штрабы заполняются гипсовым или цементно-песчаным раствором. Осмотр маяков производится через неделю после их установления, а затем один раз в месяц. При интенсивном трещинообразовании обязателен ежедневный контроль.

3.1.20. Маяк конструкции Ф.А. Белякова состоит из двух прямоугольных гипсовых или алебастровых плиток размером 100 ´ 60 мм и толщиной 15 - 20 мм.

В каждой из плиток на вертикальной и горизонтальной гранях закреплены пять металлических шпилек с острым концом, выступающим на 1 - 2 мм. Для наблюдения за развитием трещины две такие плитки крепят на гипсовом или алебастровом растворе по обе стороны трещины, чтобы шпильки были расположены на прямых, параллельных друг другу: шпильки 1, 2, 3, 4 на вертикальной плоскости расположились на одной прямой, а четыре другие - 5, 6, 7, 8 - на другой прямой.

Приращение трещины измеряют по изменению положения шпилек. Для этого к шпилькам периодически прикладывают чистый лист бумаги, наклеенный на фанеру, и после легкого надавливания измеряют расстояния между проколами по поперечному масштабу. Маяки конструкции Ф.А. Белякова позволяют определить взаимное смещение сторон трещин в трех направлениях.

3.1.21. Ширина раскрытия трещин в процессе наблюдения измеряется при помощи щелемеров или трещиномеров.

3.1.22. Щелемер конструкции ЛенГИДЕПА состоит из двух латунных пластин, одна из которых расположена в специально выточенном пазу второй пластины. На обеих пластинах имеются шкалы с миллиметровыми делениями, причем на П-образной пластине сделана прорезь для чтения делений шкалы на внутренней (второй) пластине. Пластины крепятся к изогнутым штырям, свободные концы которых заделываются в бетон. Описанный щелемер позволяет определить величину развития трещин по трем направлениям.

3.1.23. Используется также щелемер, у которого счетным механизмом служит мессура. Данные измерений по мессуре увязываются с температурой воздуха, на которую вводится соответствующая поправка; окончательную величину отсчета S, мм, определяют по формуле

S = F - klt,

где F - отсчет по мессуре, мм;

k - коэффициент линейного расширения металла плеча мессуры;

t - температура воздуха в момент отсчета;

l - длина плеча мессуры, мм.

3.1.24. Щелемер для длительных наблюдений состоит из двух элементов, каждый из которых представляет собой цилиндр из некорродирующего металла с полушаровой головкой, укрепленной на квадратном фланце из листовой стали. Для закрепления фланца в бетоне к нему приваривается анкерная скоба. Пара таких элементов устанавливается по обе стороны трещины. Измерение расстояния между ними во время каждого осмотра производится штангенциркулем дважды: в обхват цилиндров и в обхват полушаровых головок с упором ножек штангенциркуля в торцы цилиндров. Однозначность изменений расстояний по обоим измерениям между циклами укажет на отсутствие ошибок при производстве замеров.

3.1.25. Для наблюдений за трещинами и осадками в стенах применяют стрелочно-рычажное устройство. Оно состоит из деревянной или металлической стрелки длиной 0,7 - 1 м, шарниров и мерной шкалы. Шарниры, закрепляющие стрелку на стене, расположены по обе стороны от трещины. Длина остальной свободной части стрелки в 10 раз больше расстояния между указанными шарнирными креплениями.

Таким образом, вертикальному смещению одного шарнира относительно другого соответствует в 10 раз большее смещение вверх или вниз конца стрелки над мерной шкалой (металлической или деревянной рейкой).

В этих условиях величина осадок по обе стороны трещины в 1 мм соответствует смещению конца стрелки на 10 мм. При установке прибора на стене свободный конец стрелки помещается над нулевым делением мерной шкалы.

В журнале наблюдений за трещинами фиксируются номер и дата установки маяка или щелемера, место и схема их расположения, первоначальная ширина трещины, изменение со временем длины и глубины трещины. По данным измерений строят график хода раскрытия трещин. В случае деформации маяка рядом с ним устанавливается новый, которому присваивается тот же номер, но с индексом.

Маяки, на которых появились трещины, не удаляют до окончания наблюдений. Если в течение 30 сут изменение размеров трещин не будет зафиксировано, их развитие можно считать законченным, маяки можно снять и трещины заделать.

3.2. Обследование бетонных и железобетонных конструкций

3.2.1. Основными задачами обследования несущих железобетонных конструкций являются определение состояния конструкций с выявлением повреждений и причин их возникновения, а также физико-механических характеристик бетона.

3.2.2. Натурные обследования бетонных и железобетонных конструкций включают в себя следующие виды работ:

  • · осмотр и определение технического состояния конструкций по внешним признакам;
  • · инструментальное или лабораторное определение прочности бетона и арматурной стали;
  • · определение степени коррозии бетона и арматуры.

Определение технического состояния по внешним признакам

3.2.3. Определение геометрических параметров конструкций и их сечений производится по рекомендациям настоящей методики. При этом фиксируются все отклонения от проектного положения.

3.2.4. Определение ширины и глубины раскрытия трещин следует выполнять в соответствии с данной методикой. Степень раскрытия трещин сопоставляется с нормативными требованиями по предельным состояниям второй группы.

3.2.5. Определение и оценку лакокрасочных покрытий железобетонных конструкций следует производить по методике, изложенной в ГОСТ 6992. При этом фиксируются следующие основные виды повреждений: растрескивания и отслоения, которые характеризуются глубиной разрушения верхнего слоя (до грунтовки), пузыри и коррозионные очаги, характеризуемые размером очага (диаметром) в мм. Площадь отдельных видов повреждений покрытия выражают ориентировочно в процентах по отношению ко всей окрашенной поверхности.

3.2.6. При наличии увлажненных участков и поверхностных высолов на бетоне конструкций определяют величину этих участков и причину их появления.

3.2.7. Результаты визуального осмотра железобетонных конструкций фиксируются в виде карт дефектов, нанесенных на схематические планы или разрезы здания, или составляют таблицы дефектов с рекомендациями по классификации дефектов и повреждений с оценкой категории состояния конструкций.

3.2.8. Внешние признаки, характеризующие состояние железобетонных конструкций по 5 категориям, приводятся в таблице (приложение 1).

Определение прочности бетона механическими методами

3.2.9. Механические методы неразрушающего контроля при обследовании конструкций применяют для определения прочности бетона всех видов нормируемой прочности, контролируемых по ГОСТ 18105 (таблица 3.1).

Таблица 3.1 - Методы определения прочности бетона в зависимости от ожидаемой прочности элементов

Наименование метода Предельные значения прочности бетона, МПа
Упругий отскок и пластическая деформация 5 - 50
Ударный импульс 10 - 70
Отрыв 5 - 60
Скалывание ребра 10 - 70
Отрыв со скалыванием 5 - 100

В зависимости от применяемого метода и приборов косвенными характеристиками прочности являются:

  • · значение отскока бойка от поверхности бетона (или прижатого к ней ударника);
  • · параметр ударного импульса (энергия удара);
  • · размеры отпечатка на бетоне (диаметр, глубина) или соотношение диаметров отпечатков на бетоне и стандартном образце при ударе индентора или вдавливании индентора в поверхность бетона;
  • · значение напряжения, необходимого для местного разрушения бетона при отрыве приклеенного к нему металлического диска, равного усилию отрыва, деленному на площадь проекции поверхности отрыва бетона на плоскость диска;
  • · значение усилия, необходимого для скалывания участка бетона на ребре конструкции;
  • · значение усилия местного разрушения бетона при вырыве из него анкерного устройства.

При проведении испытаний механическими методами неразрушающего контроля следует руководствоваться указаниями ГОСТ 22690.

3.2.10. К приборам механического принципа действия относятся: эталонный молоток Кашкарова, молоток Шмидта, молоток Физделя, пистолет ЦНИИСКа, молоток Польди и др. Эти приборы дают возможность определить прочность материала по величине внедрения бойка в поверхностный слой конструкций или по величине отскока бойка от поверхности конструкции при нанесении калиброванного удара (пистолет ЦНИИСКа).

3.2.11. Молоток Физделя основан на использовании пластических деформаций строительных материалов. При ударе молотком по поверхности конструкции образуется лунка, по диаметру которой и оценивают прочность материала.

Место конструкции, на которое наносят отпечатки, предварительно очищают от штукатурного слоя, затирки или окраски.

Процесс работы с молотком Физделя заключается в следующем:

  • · правой рукой берут за конец деревянной рукоятки, локоть опирают о конструкцию;
  • · локтевым ударом средней силы наносят 10 - 12 ударов на каждом участке конструкции;
  • · расстояние между отпечатками ударного молотка должно быть не менее 30 мм.

Диаметр образованной лунки измеряют штангенциркулем с точностью до 0,1 мм по двум перпендикулярным направлениям и принимают среднее значение. Из общего числа измерений, произведенных на данном участке, исключают наибольший и наименьший результаты, а по остальным вычисляют среднее значение.

Прочность бетона определяют по среднему измеренному диаметру отпечатка и тарировочной кривой, предварительно построенной на основании сравнения диаметров отпечатков шарика молотка и результатов лабораторных испытаний на прочность образцов бетона, взятых из конструкции по указаниям ГОСТ 28570 или специально изготовленных из тех же компонентов и по той же технологии, что и материалы обследуемой конструкции.

3.2.12. К методике определения прочности бетона, основанной на свойствах пластических деформаций, относится также молоток Кашкарова (ГОСТ 22690).

При ударе молотком Кашкарова по поверхности конструкции получаются два отпечатка на поверхности материала с диаметром dδ и на контрольном (эталонном) стержне с диаметром dэ.

Отношение диаметров получаемых отпечатков зависит от прочности обследуемого материала и эталонного стержня и практически не зависит от скорости и силы удара, наносимого молотком. По среднему значению величины dδ/dэ из тарировочного графика определяют прочность материала.

На участке испытания должно быть выполнено не менее пяти определений при расстоянии между отпечатками на бетоне не менее 30 мм, а на металлическом стержне - не менее 10 мм (таблица 3.2).

3.2.13. К приборам, основанным на методе упругого отскока, относятся пистолет ЦНИИСКа, пистолет Борового, молоток Шмидта, склерометр 6КМ со стержневым ударником и др. Принцип действия этих приборов основан на измерении упругого отскока ударника при постоянной величине кинетической энергии металлической пружины. Взвод и спуск бойка осуществляются автоматически при соприкосновении ударника с испытываемой поверхностью. Величину отскока бойка фиксирует указатель на шкале прибора.

Таблица 3.2

Наименование метода Число испытаний на участке Расстояние между местами испытаний Расстояние от края конструкции до места испытаний, мм Толщина конструкции, мм
Упругий отскок 5 30 50 100
Пластическая деформация 5 30 50 70
Ударный импульс 10 15 50 50
Отрыв 1 2 диаметра диска 50 50
Скалывание ребра 2 200 - 170
Отрыв со скалыванием 1 5 глубин вырыва 150 Удвоенная глубина установки анкера

В результате удара боек отскакивает от ударника. Степень отскока отмечается на шкале прибора при помощи специального указателя. Зависимость величины отскока ударника от прочности бетона устанавливают по данным тарировочных испытаний бетонных кубиков размером 15 ´ 15 ´ 15 см, и на этой основе строится тарировочная кривая. Прочность материала конструкции выявляют по показаниям градуированной шкалы прибора в момент нанесения ударов по испытываемому элементу.

3.2.14. Методом испытания на отрыв со скалыванием определяют прочность бетона в теле конструкции. Сущность метода состоит в оценке прочностных свойств бетона по усилию, необходимому для его разрушения, вокруг шпура определенного размера при вырывании закрепленного в нем разжимного конуса или специального стержня, заделанного в бетоне. Косвенным показателем прочности служит вырывное усилие, необходимое для вырыва заделанного в тело конструкций анкерного устройства вместе с окружающим его бетоном при глубине заделки h. При испытании методом отрыва со скалыванием участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.

Прочность бетона на участке допускается определять по результатам одного испытания. Участки для испытания следует выбирать так, чтобы в зону вырыва не попала арматура. На участке испытания толщина конструкции должна превышать глубину заделки анкера не менее чем в два раза. При пробивке отверстия шлямбуром или высверливанием толщина конструкции в этом месте должна быть не менее 150 мм. Расстояние от анкерного устройства до грани конструкции должно быть не менее 150 мм, а от соседнего анкерного устройства - не менее 250 мм.

3.2.15. При проведении испытаний используются анкерные устройства трех типов. Анкерные устройства типа I устанавливают на конструкции при бетонировании; анкерные устройства типов II и III устанавливают в предварительно подготовленные шпуры, образованные в бетоне высверливанием. Рекомендуемая глубина отверстий: для анкера типа II - 30 мм; для анкера типа III - 35 мм. Диаметр шпура в бетоне не должен превышать максимальный диаметр заглубленной части анкерного устройства более чем на 2 мм. Заделка анкерных устройств в конструкциях должна обеспечить надежное сцепление анкера с бетоном. Нагрузка на анкерное устройство должна возрастать плавно, со скоростью не более 1,5 - 3 кН/с вплоть до вырыва его вместе с окружающим бетоном.

Наименьший и наибольший размеры вырванной части бетона, равные расстоянию от анкерного устройства до границ разрушения на поверхности конструкции, не должны отличаться один от другого более чем в два раза.

3.2.16. Единичное значение прочности бетона на участке испытаний определяют в зависимости от напряжений сжатия в бетоне s и значения Ri.

Сжимаемые напряжения в бетоне определяют расчетом конструкций с учетом действительных размеров сечений и величин нагрузок (воздействий).

Единичное значение Ri0 прочности бетона на участке в предположении sб = 0 определяют по формуле

,

где т3 -   коэффициент, учитывающий крупность заполнителя, принимаемый равным: при максимальной крупности заполнителя менее 50 мм - 1, при крупности 50 мм и более - 1,1;

тh - коэффициент, вводимый при фактической глубине hф, отличающейся от h более чем на 5 %, при этом hф не должна отличаться от номинального значения, принятого при испытании, более чем на ±15 %;

А - коэффициент пропорциональности, значение которого при использовании анкерных устройств принимается:

для анкеров типа II - 30 мм: A1, = 0,24 см2 (для бетона естественного твердения); А2 = 0,25 см2 (для бетона, прошедшего тепловую обработку); для анкеров типа III - 35 мм соответственно: А1 = 0,14 см2; А2 = 0,17 см2.

Прочность обжатого бетона определяют из уравнения

.

3.2.17. При определении класса бетона методом скалывания ребра конструкции применяют прибор типа ГПНС-4.

На участке испытания необходимо провести не менее двух сколов бетона.

Толщина испытываемой конструкции должна быть не менее 50 мм, а расстояние между соседними сколами должно быть не менее 200 мм. Нагрузочный крюк должен быть установлен таким образом, чтобы величина а не отличалась от номинальной более чем на 1 мм. Нагрузка на испытываемую конструкцию должна нарастать плавно, со скоростью не более (1 + 0,3) кН/с вплоть до скалывания бетона. При этом не должно происходить проскальзывания нагрузочного крюка. Результаты испытаний, при которых в месте скола обнажалась арматура и фактическая глубина скалывания отличалась от заданного более 2 мм, не учитываются.

3.2.18. Единичное значение Ri прочности бетона на участке испытаний определяют в зависимости от напряжений сжатия бетона sб и значения Ri0.

Сжимающие напряжения в бетоне sб, действующие в период испытаний, определяют расчетом конструкции с учетом действительных размеров сечений и величин нагрузок.

Единичное значение Ri0 прочности бетона на участке в предположении sб = 0 определяют по формуле

Ri0 = mgRiy,

где тg - поправочный коэффициент, учитывающий крупность заполнителя, принимаемый равным при максимальной крупности заполнителя 20 мм и менее - 1, при крупности более 20 до 40 мм - 1,1;

Riy -       условная прочность бетона, определяемая по среднему значению косвенного показателя Р:

,

Pi -    усилие каждого из скалываний, выполненных на участке испытаний.

3.2.19. При испытании методом скалывания ребра на поверхности бетона не должно быть трещин, сколов бетона, наплывов или раковин высотой (глубиной) более 5 мм. Участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.

Ультразвуковой метод определения прочности бетона

3.2.20. Принцип определения прочности бетона ультразвуковым методом основан на наличии функциональной связи между скоростью распространения ультразвуковых колебаний и прочностью бетона.

Ультразвуковой метод применяют для определения прочности бетона классов В7,5 - В35 (марок М100 - М450) на сжатие.

3.2.21. Прочность бетона в конструкциях определяют экспериментально с использованием градуировочных зависимостей «скорости распространения ультразвука - прочность бетона. V = f(R или «время распространения ультразвука t - прочность бетона. t = f(R)». Степень точности метода зависит от тщательности построения тарировочного графика.

3.2.22. Для определения прочности бетона ультразвуковым методом применяются приборы УКБ-1, УКБ-1М, УК-16П, «Бетон-22» и др.

3.2.23. Ультразвуковые измерения в бетоне проводят способами сквозного или поверхностного прозвучивания. При измерении скорости распространения ультразвука способом сквозного прозвучивания ультразвуковые преобразователи устанавливают с противоположных сторон образца или конструкции. Скорость распространения ультразвука V, м/с, вычисляют по формуле

,

где t - время распространения ультразвука, мкс;

l - расстояние между центрами установки преобразователей (база прозвучивания), мм.

При измерении скорости распространения ультразвука способом поверхностного прозвучивания ультразвуковые преобразователи устанавливают на одной стороне образца или конструкции.

3.2.24. Число измерений времени распространения ультразвука в каждом образце должно быть при сквозном прозвучивании - 3, при поверхностном - 4.

Отклонение отдельного результата измерения скорости распространения ультразвука в каждом образце от среднего арифметического значения результатов измерений для данного образца не должно превышать 2 %.

Измерение времени распространения ультразвука и определение прочности бетона производятся в соответствии с указаниями паспорта (технического условия применения) данного типа прибора и указаний ГОСТ 17624.

3.2.25. На практике нередки случаи, когда возникает необходимость определения прочности бетона эксплуатируемых конструкций при отсутствии или невозможности построения градуировочной таблицы. В этом случае определение прочности бетона проводят в зонах конструкций, изготовленных из бетона на одном виде крупного заполнителя (конструкции одной партии).

Скорость распространения ультразвука V определяют не менее чем в 10 участках обследуемой зоны конструкций, по которым находят среднее значение V. Далее намечают участки, в которых скорость распространения ультразвука имеет максимальное Vmax и минимальное Vmin значения, а также участок, где скорость имеет величину Vn, наиболее приближенную к значению V, а затем выбуривают из каждого намеченного участка не менее чем по два керна, по которым определяют значения прочности в этих участках: Rmax, Rmin, Rn соответственно.

Прочность бетона RH определяют по формуле

RH = a0 + a1

при Rmax - Rmin £ 2Rn(60 - Rn)/100.

Коэффициенты a1 и a0 вычисляют по формулам:

;

.

3.2.26. При определении прочности бетона по образцам, отобранным из конструкции, следует руководствоваться указаниями ГОСТ 28570.

3.2.27. При выполнении условия

допускается ориентировочно определять прочность для бетонов классов прочности до В25 по формуле

R = AV4,

где А - коэффициент, определяемый путем испытаний не менее трех кернов, отобранных из конструкций.

3.2.28. Для бетонов классов прочности выше В25 прочность бетона в эксплуатируемых конструкциях может быть оценена также сравнительным методом, принимая в основу характеристики конструкции с наибольшей прочностью.

В этом случае

.

3.2.29. Такие конструкции, как балки, ригели, колонны, должны прозвучиваться в поперечном направлении, плита - по наименьшему размеру (ширине или толщине), а ребристая плита - по толщине ребра.

3.2.30. При тщательном проведении испытаний этот метод дает наиболее достоверные сведения о прочности бетона в существующих конструкциях. Недостатком его является большая трудоемкость работ по отбору и испытанию образцов.

Определение толщины защитного слоя бетона и расположения арматуры

3.2.31. Для определения толщины защитного слоя бетона и расположения арматуры в железобетонной конструкции при обследованиях применяют магнитные, электромагнитные методы по ГОСТ 22904 или методы просвечивания и ионизирующих излучений по ГОСТ 17623 с выборочной контрольной проверкой получаемых результатов путем пробивки борозд и непосредственными измерениями.

Радиационные методы, как правило, применяют для обследования состояния и контроля качества сборных и монолитных железобетонных конструкций при строительстве, эксплуатации и реконструкции особо ответственных зданий и сооружений.

Радиационный метод основан на просвечивании контролируемых конструкций ионизирующим излучением и получении при этом информации о ее внутреннем строении с помощью преобразователя излучения. Просвечивание железобетонных конструкций производят при помощи излучения рентгеновских аппаратов, излучения закрытых радиоактивных источников.

Транспортировку, хранение, монтаж и наладку радиационной аппаратуры проводят специализированные организации, имеющие специальное разрешение на проведение указанных работ.

3.2.32. Магнитный метод основан на взаимодействии магнитного или электромагнитного поля прибора со стальной арматурой железобетонной конструкции.

Толщину защитного слоя бетона и расположение арматуры в железобетонной конструкции определяют на основе экспериментально установленной зависимости между показаниями прибора и указанными контролируемыми параметрами конструкций.

3.2.33. Для определения толщины защитного слоя бетона и расположения арматуры из приборов применяют, в частности, ИСМ и ИЗС-10Н.

Прибор ИЗС-10Н обеспечивает измерение толщины защитного слоя бетона в зависимости от диаметра арматуры в следующих пределах:

  • · при диаметре стержней арматуры от 4 до 10 мм толщины защитного слоя - от 5 до 30 мм;
  • · при диаметре стержней арматуры от 12 до 32 мм толщины защитного слоя - от 10 до 60 мм.

Прибор обеспечивает определение расположения проекций осей стержней арматуры на поверхность бетона:

  • · диаметром от 12 до 32 мм - при толщине защитного слоя бетона не более 60 мм;
  • · диаметром от 4 до 12 мм - при толщине защитного слоя бетона не более 30 мм.

При расстоянии между стержнями арматуры менее 60 мм применение приборов типа ИЗС нецелесообразно.

3.2.34. Определение толщины защитного слоя бетона и диаметра арматуры производится в следующем порядке:

  • · до проведения испытаний сопоставляют технические характеристики применяемого прибора с соответствующими проектными (ожидаемыми) значениями геометрических параметров армирования контролируемой железобетонной конструкции;
  • · при несоответствии технических характеристик прибора параметрам армирования контролируемой конструкции необходимо установить индивидуальную градуировочную зависимость в соответствии с ГОСТ 22904.

Число и расположение контролируемых участков конструкции назначают в зависимости от:

  • · цели и условий испытаний;
  • · особенности проектного решения конструкции;
  • · технологии изготовления или возведения конструкции с учетом фиксации арматурных стержней;
  • · условий эксплуатации конструкции с учетом агрессивности внешней среды.

3.2.35. Работу с прибором следует производить в соответствии с инструкцией по его эксплуатации. В местах измерений на поверхности конструкции не должно быть наплывов высотой более 3 мм.

3.2.36. При толщине защитного слоя бетона, меньшей предела измерения применяемого прибора, испытания проводят через прокладку толщиной 10 + 0,1 мм из материала, не обладающего магнетическими свойствами.

Фактическую толщину защитного слоя бетона в этом случае определяют как разность между результатами измерения и толщиной этой прокладки.

3.2.37. При контроле расположения стальной арматуры в бетоне конструкции, для которой отсутствуют данные о диаметре арматуры и глубине ее расположения, определяют схему расположения арматуры и измеряют ее диаметр путем вскрытия конструкции.

3.2.38. Для приближенного определения диаметра арматурного стержня определяют и фиксируют на поверхности железобетонной конструкции место расположения арматуры прибором типа ИЗС-10Н.

Устанавливают преобразователь прибора на поверхности конструкции и по шкалам прибора или по индивидуальной градуировочной зависимости определяют несколько значений толщины защитного слоя бетона δpr для каждого из предполагаемых диаметров арматурного стержня, которые могли применяться для армирования данной конструкции.

Между преобразователем прибора и поверхностью бетона конструкции устанавливают прокладку соответствующей толщины (например, 10 мм), вновь проводят измерения и определяют расстояние для каждого предполагаемого диаметра арматурного стержня.

Для каждого диаметра арматурного стержня сопоставляют значения δpr и (δabs - δe).

В качестве фактического диаметра d принимают значение, для которого выполняется условие

pr - (δabs - δe)| → min,

где δabs - показание прибора с учетом толщины прокладки;

δе - толщина прокладки.

Индексы в формуле обозначают:

s - шаг продольной арматуры;

р - шаг поперечной арматуры;

е - наличие прокладки.

3.2.39. Результаты измерений заносят в журнал, форма которого приведена в таблице 3.3.

3.2.40. Фактические значения толщины защитного слоя бетона и расположение стальной арматуры в конструкции по результатам измерений сравнивают со значениями, установленными технической документацией на эти конструкции.

Таблица 3.3 -    Форма записи результатов измерений толщины защитного слоя бетона железобетонных конструкций

Тип прибора, № Условное обозначение конструкции Номера контролируемых участков конструкции Параметры армирования конструкции по технической документации Показания прибора Измеренная толщина защитного слоя бетона, мм Примечание
Номинальный диаметр арматуры, мм Расположение стержней Толщина защитного слоя бетона, мм мм Условные единицы
1 2 3 4 5 6 7 8 9 10










Дата испытаний _________________________ Смена ___________________________ Подпись лица, проводившего испытания _____________________________________

3.2.41. Результаты измерений оформляют протоколом, который должен содержать следующие данные:

  • · наименование проверяемой конструкции;
  • · объем партии и число контролируемых конструкций;
  • · тип и номер применяемого прибора;
  • · номера контролируемых участков конструкций и схему их расположения на конструкции;
  • · проектные значения геометрических параметров армирования контролируемой конструкции;
  • · результаты проведенных испытаний;
  • · ссылку на инструктивно-нормативный документ, регламентирующий метод испытаний.

Определение прочностных характеристик арматуры

3.2.42. Расчетные сопротивления неповрежденной арматуры разрешается принимать по проектным данным или по нормам проектирования железобетонных конструкций.

В зависимости от класса стали рекомендуется принимать следующие расчетные сопротивления арматуры на растяжение и сжатие:

  • · для гладкой арматуры - 225 МПа (класс A-I);
  • · для арматуры с профилем, гребни которого образуют рисунок винтовой линии, - 280 МПа (класс А-II);
  • · для арматуры периодического профиля, гребни которого образуют рисунок «елочка», - 355 МПа (класс A-III).

Жесткая арматура из прокатных профилей принимается в расчетах с расчетным сопротивлением, равным 210 МПа.

3.2.43. При отсутствии необходимой документации и информации класс арматурных сталей устанавливается испытанием вырезанных из конструкции образцов с сопоставлением предела текучести, временного сопротивления и относительного удлинения при разрыве с данными ГОСТ 380 или приближенно по виду арматуры, профилю арматурного стержня и времени возведения объекта.

3.2.44. Расположение, количество и диаметр арматурных стержней определяются либо путем вскрытия и прямых замеров, либо применением магнитных или радиографических методов (по ГОСТ 22904 и ГОСТ 17625 соответственно).

3.2.45. Для определения механических свойств стали поврежденных конструкций рекомендуется использовать методы:

  • · испытания стандартных образцов, вырезанных из элементов конструкций, согласно указаниям ГОСТ 7564;
  • · испытания поверхностного слоя металла на твердость согласно указаниям ГОСТ 18661.

3.2.46. Заготовки для образцов из поврежденных элементов рекомендуется вырезать в местах, не получивших пластических деформаций при повреждении, и чтобы после вырезки были обеспечены их прочность и устойчивость конструкции.

3.2.47. Заготовки для образцов рекомендуется отбирать в трех однотипных элементах конструкций (верхний пояс, нижний пояс, первый сжатый раскос и т.п.) в количестве 1 - 2 шт. из одного элемента. Все заготовки должны быть замаркированы в местах их взятия и марки обозначены на схемах, прилагаемых к материалам обследования конструкций.

3.2.48. Характеристики механических свойств стали - предел текучести sт, временное сопротивление sб и относительное удлинение при разрыве δ - получают путем испытания на растяжение образцов согласно ГОСТ 1497.

Определение основных расчетных сопротивлений стали конструкций производится путем деления среднего значения предела текучести на коэффициент надежности по материалу ум = 1,05 или временного сопротивления на коэффициент надежности у = 1,05. При этом за расчетное сопротивление принимается наименьшая из величин Rт, Rб, которые найдены соответственно по sт и sб.

При определении механических свойств металла по твердости поверхностного слоя рекомендуется применять портативные переносные приборы: Польди-Хютта, Баумана, ВПИ-2, ВПИ-3л и др.

Полученные при испытании на твердость данные переводятся в характеристики механических свойств металла по эмпирической формуле. Так, зависимость между твердостью по Бриннелю и временным сопротивлением металла устанавливается по формуле

sб = 3,5Hb,

где Hb - твердость по Бриннелю.

3.2.49. Выявленные фактические характеристики арматуры сопоставляются с требованиями СНиП 2.03.01, и на этой основе дается оценка эксплуатационной пригодности арматуры.

Определение прочности бетона путем лабораторных испытаний

3.2.50. Лабораторное определение прочности бетона конструкций производится путем испытания образцов, взятых из этих конструкций.

Отбор образцов производится путем выпиливания кернов диаметром от 50 до 150 мм на участках, где ослабление элемента не оказывает существенного влияния на несущую способность конструкций. Этот метод дает наиболее достоверные сведения о прочности бетона в существующих конструкциях. Недостатком его является большая трудоемкость работ по отбору и обработке образцов.

При определении прочности по образцам, отобранным из бетонных и железобетонных конструкций, следует руководствоваться указаниями ГОСТ 28570.

Сущность метода состоит в измерении минимальных усилий, разрушающих выбуренные или выпиленные из конструкции образцы бетона при их статическом нагружении с постоянной скоростью роста нагрузки.

3.2.51. Форма и номинальные размеры образцов в зависимости от вида испытаний бетона должны соответствовать ГОСТ 10180.

3.2.52. Места отбора проб бетона следует назначать после визуального осмотра конструкций в зависимости от их напряженного состояния с учетом минимально возможного снижения их несущей способности.

Пробы рекомендуется отбирать из мест, удаленных от стыков и краев конструкций. После извлечения проб места отбора следует заделывать мелкозернистым бетоном. Участки для выбуривания или выпиливания проб бетона следует выбирать в местах, свободных от арматуры.

3.2.53. Для выбуривания образцов из бетона конструкций применяют сверлильные станки типа ИЕ 1806 с режущим инструментом в виде кольцевых алмазных сверл типа СКА или твердосплавных концевых сверл и приспособления «Бур Кер» и «Буркер А-240».

Для выпиливания образцов из бетона конструкций применяют распиловочные станки типов УРБ-175, УРБ-300 с режущим инструментом в виде отрезных алмазных дисков типа АОК.

Допускается применение другого оборудования и инструментов, обеспечивающих изготовление образцов, отвечающих требованиям ГОСТ 10180.

3.2.54. Испытание образцов на сжатие и все виды растяжения, а также выбор схемы испытания и нагружения производят также по ГОСТ 10180.

Опорные поверхности испытываемых на сжатие образцов в случае, когда их отклонения от плоскости плиты пресса более 0,1 мм, должны быть исправлены нанесением слоя выравнивающего состава, в качестве которого следует использовать цементное тесто, цементно-песчаный раствор или эпоксидные композиции. Толщина слоя выравнивающего состава на образце должна быть не более 5 мм.

3.2.55. Прочность бетона испытываемого образца с точностью до 0,1 МПа при испытании на сжатие и с точностью до 0,01 МПа при испытаниях на растяжение вычисляют по формулам:

на сжатие

;

на осевое растяжение

;

на растяжение при раскалывании

;

на растяжение при изгибе

,

где F -   разрушающая нагрузка, Н;

А - площадь рабочего сечения образца, мм2;

a, b, l - соответственно ширина и высота поперечного сечения призмы и расстояние между опорами при испытании образцов на растяжение при изгибе, мм.

Для приведения прочности бетона в испытанном образце к прочности бетона в образце базового размера и формы прочности, полученным по указанным формулам, пересчитывают по формулам:

на сжатие

R = Rобр1;

на осевое растяжение

;

на растяжение при раскалывании

;

на растяжение при изгибе

,

где η1 и η2 -    коэффициенты, учитывающие отношение высоты цилиндра к его диаметру, принимаемые при испытаниях на сжатие по таблице 3.4, при испытаниях на растяжение при раскалывании по таблице 3.5 и равные единице для образцов другой формы;

a, b, g, δ        - масштабные коэффициенты, учитывающие форму и размеры поперечного сечения испытанных образцов, которые принимают по таблице 3.6 или определяют экспериментально по ГОСТ 10180.

3.2.56. Отчет об испытаниях должен состоять из протокола отбора проб, результатов испытания образцов и соответствующей ссылки на стандарты, по которым проведено испытание.

3.2.57. При наличии увлажненных участков и поверхностных высолов на бетоне конструкций определяют величину этих участков и причину их появления.

Таблица 3.4

h/d От 0,85 до 0,94 От 0,95 до 1,04 От 1,05 до 1,14 От 1,15 до 1,24 От 1,25 до 1,34 От 1,35 до 1,44 От 1,45 до 1,54 От 1,55 до 1,64 От 1,65 до 1,74 От 1,75 до 1,84 От 1,85 до 1,95 От 1,95 до 2,0
ηi 0,96 1,0 1,04 1,08 1,1 1,12 1,13 1,14 1,16 1,18 1,19 1,2

Таблица 3.5

h/d 1,04 и менее 1,05 - 1,24 1,25 - 1,44 1,45 - 1,64 1,65 - 1,84 1,85 - 2,0
η2 1,0 1,02 1,04 1,07 1,1 1,13

Таблица 3.6

Размеры образцов: ребро куба или сторона квадратной призмы, мм Сжатие a Растяжение при раскалывании g Растяжение при изгибе δ Осевое растяжение b
Все виды бетонов Тяжелый бетон Мелкозернистый бетон Тяжелый бетон
70 0,85 0,78 0,87 0,86 0,8
100 0,95 0,88 0,92 0,92 0,92
150 1,0 1,0 1 1,0 1,0
200 1,05 1,10 1,05 1,15 1,08

3.2.58. Результаты визуального осмотра железобетонных конструкций фиксируют в виде карты дефектов, нанесенных на схематические планы или разрезы здания, или составляют таблицы дефектов с рекомендациями по классификации дефектов и повреждений с оценкой категории состояния конструкций.

Определение степени коррозии бетона и арматуры

3.2.59. Для определения степени коррозионного разрушения бетона (степени карбонизации, состава новообразований, структурных нарушений бетона) используются физико-химические методы.

Исследование химического состава новообразований, возникших в бетоне под действием агрессивной среды, производится с помощью дифференциально-термического и рентгено-структурного методов, выполняемых в лабораторных условиях на образцах, отобранных из эксплуатируемых конструкций.

Изучение структурных изменений бетона производится с помощью ручной лупы. Такой осмотр позволяет изучить поверхность образца, выявить наличие крупных пор, трещин и других дефектов.

С помощью микроскопического метода выявляют взаимное расположение и характер сцепления цементного камня и зерен заполнителя; состояние контакта между бетоном и арматурой; форму, размер и количество пор; размер и направление трещин.

3.2.60. Определение глубины карбонизации бетона производят по изменению величины водородного показателя рН.

В случае если бетон сухой, смачивают поверхность скола чистой водой, которой должно быть столько, чтобы на поверхности бетона не образовалась видимая пленка влаги. Избыток воды удаляют чистой фильтровальной бумагой. Влажный и воздушно-сухой бетон увлажнения не требует.

На скол бетона с помощью капельницы или пипетки наносят 0,1 %-ный раствор фенолфталеина в этиловом спирте. При изменении рН от 8,3 до 10 окраска индикатора изменяется от бесцветной до ярко-малиновой. Свежий излом образца бетона в карбонизированной зоне после нанесения на него раствора фенолфталеина имеет серый цвет, а в некарбонизированной зоне приобретает ярко-малиновую окраску.

Для определения глубины карбонизации бетона примерно через минуту после нанесения индикатора измеряют линейкой с точностью до 0,5 мм расстояние от поверхности образца до границы ярко окрашенной зоны в направлении, нормальном к поверхности. В бетонах с равномерной структурой пор граница ярко окрашенной зоны расположена обычно параллельно наружной поверхности.

В бетонах с неравномерной структурой пор граница карбонизации может быть извилистой. В этом случае необходимо измерять максимальную и среднюю глубину карбонизации бетона.

3.2.61. Факторы, влияющие на развитие коррозии бетонных и железобетонных конструкций, делятся на две группы: связанные со свойствами внешней среды (атмосферных и грунтовых вод, производственной среды и т.п.) и обусловленные свойствами материалов (цемента, заполнителей, воды и т.п.) конструкций.

Оценивая опасность коррозии бетонных и железобетонных конструкций, необходимо знать характеристики бетона: его плотность, пористость, количество пустот и др. При обследовании технического состояния конструкций эти характеристики должны находиться в центре внимания обследователя.

3.2.62. Коррозия арматуры в бетоне обусловлена потерей защитных свойств бетона и доступом к ней влаги, кислорода воздуха или кислотообразующих газов.

Коррозия арматуры в бетоне возникает при уменьшении щелочности окружающего арматуру электролита до рН, равного или меньше 12, при карбонизации или коррозии бетона, т.е. коррозия арматуры в бетоне является электрохимическим процессом.

3.2.63. При оценке технического состояния арматуры и закладных деталей, пораженных коррозией, прежде всего необходимо установить вид коррозии и участки поражения. После определения вида коррозии необходимо установить источники воздействия и причины коррозии арматуры.

3.2.64. Толщина продуктов коррозии определяется микрометром или с помощью приборов, которыми замеряют толщину немагнитных противокоррозионных покрытий на стали (например ИТП-1 и др.).

Для арматуры периодического профиля следует отмечать остаточную выраженность рифов после зачистки.

В местах, где продукты коррозии стали хорошо сохраняются, можно по их толщине ориентировочно судить о глубине коррозии по соотношению

δк ≈ 0,6δпк,

где δк - средняя глубина сплошной равномерной коррозии стали;

δпк - толщина продуктов коррозии.

3.2.65. Выявление состояния арматуры элементов железобетонных конструкций производится путем удаления защитного слоя бетона с обнажением рабочей и монтажной арматуры.

Обнажение арматуры производится в местах наибольшего ее ослабления коррозией, которые выявляются по отслоению защитного слоя бетона и образованию трещин и пятен ржавой окраски, расположенных вдоль стержней арматуры.

Диаметр арматуры измеряется штангенциркулем или микрометром. В местах, где арматура подвергалась интенсивной коррозии, вызвавшей отпадание защитного слоя, производится тщательная зачистка ее от ржавчины до появления металлического блеска.

3.2.66. Степень коррозии арматуры оценивается по следующим признакам: характеру коррозии, цвету, плотности продуктов коррозии, площади пораженной поверхности, площади поперечного сечения арматуры, глубине коррозионных поражений.

При сплошной равномерной коррозии глубину коррозионных поражений определяют измерением толщины слоя ржавчины, при язвенной - измерением глубины отдельных язв. В первом случае острым ножом отделяют пленку ржавчины и толщину ее измеряют штангенциркулем. При язвенной коррозии рекомендуется вырезать куски арматуры, ржавчину удалить травлением (погружая арматуру в 10 %-ный раствор соляной кислоты, содержащий 1 % ингибитора-уротропина) с последующей промывкой водой.

Затем арматуру необходимо погрузить на 5 мин в насыщенный раствор нитрата натрия, вынуть и протереть. Глубину язв измеряют индикатором с иглой, укрепленной на штативе. Глубину коррозии определяют по показанию стрелки индикатора как разность показания у края и дна коррозионной язвы.

3.2.67. При выявлении участков конструкций с повышенным коррозионным износом, связанным с местным (сосредоточенным) воздействием агрессивных факторов, рекомендуется в первую очередь, обращать внимание на следующие элементы и узлы конструкций:

  • · опорные узлы стропильных и подстропильных ферм, вблизи которых расположены водоприемные воронки внутреннего водостока;
  • · верхние пояса ферм в узлах присоединения к ним светоаэрационных фонарей, стоек различных щитов;
  • · верхние пояса подстропильных ферм, вдоль которых расположены ендовы кровель;
  • · опорные узлы ферм, находящиеся внутри кирпичных стен;
  • · верхние части колонн, находящиеся внутри кирпичных стен.

3.3. Обследование каменных конструкций

3.3.1. Обследование каменных, в том числе кирпичных конструкций, производится с целью определения их состояния и соответствия эксплуатационным качествам.

3.3.2. В состав работ по обследованию каменных конструкций входят следующие работы:

  • · оценка технического состояния по внешним признакам;
  • · инструментальное определение прочности каменных конструкций.

3.3.3. При определении качества кладки отмечаются вид кирпича (красный, силикатный, пустотелый и т.п.), а также вид раствора (цементный, сложный, известковый и т.п.).

3.3.4. Фактическая толщина горизонтальных швов кладки устанавливается замером высоты 5 - 10 рядов кладки и соответствующим подсчетом средних значений.

3.3.5. При обследовании армокаменных конструкций следует особое внимание уделять состоянию арматуры и защитного слоя цементного раствора для конструкций с расположением арматуры с наружной стороны кладки. Оценка степени коррозии арматуры и вида коррозии производится по указаниям настоящей методики.

3.3.6. Обследованию и замеру подлежат все видимые на глаз трещины, включая волосяные, как по ширине, глубине, так и по длине и расположению их на поверхности столбов и стен.

При наличии штукатурки необходимо иметь в виду, что ширина и длина трещины в штукатурке может не соответствовать размерам трещины в самой кладке.

Для установления действительных размеров трещин в кладке штукатурку следует отбивать. Методы и средства наблюдения за трещинами приводятся в п. 3.1 настоящей методики.

3.3.7. Техническое состояние каменных конструкций по внешним признакам, характеризующим степень их износа, приводится в таблице (приложение 2).

Определение прочности каменных конструкций

3.3.8. Для определения в натурных условиях прочности каменных конструкций без их разрушения применяют ультразвуковые методы по ГОСТ 17424 или механические методы неразрушающего контроля по ГОСТ 22690.

Для указанных целей рекомендуется использовать, в частности, ультразвуковые приборы УКВ-1, УКБ-1М. Зная расстояние между излучателем и приемником и время прохождения ультразвука через конструкцию, вычисляют скорость ультразвука. Прочность материала определяют по тарировочным кривым для каждого вида материала. Тарировку выполняют в соответствии с ГОСТ 10180.

3.3.9. Для определения прочности кирпича, раствора и мелкозернистых бетонов (пенобетон, газобетон и др.) применяют прибор типа ПС-1, разработанный кафедрой железобетонных конструкций Московского института коммунального хозяйства и строительства.

Принцип действия прибора основан на измерении глубины внедрения конического инвертора в испытуемый материал под действием статической нагрузки. Нагрузка создается вручную нажатием на рукоять прибора и передается на конический элемент через тарированную пружину. Значение нагрузки ограничено заданным перемещением рукоятки в пределах прорези в корпусе прибора.

Прочность материала может быть определена как на отдельных образцах, извлеченных из конструкции, так и непосредственно в конструкции, в том числе и находящейся под нагрузкой. Поверхность материала, прочность которого определяется, должна быть ровной площадкой 15 - 20 см в поперечнике, очищенной от грязи, краски и штукатурки. Поверхность следует обработать шкуркой и обеспылить.

3.3.10. Для лабораторных испытаний прочности кирпича и раствора отбор образцов производят из малонагруженных элементов конструкций при условии идентичности применяемых на этих участках материалов. Образцы кирпича или камней должны быть целыми, без трещин. Из камней неправильной формы выпиливают кубики с размером ребра от 40 до 200 мм или высверливают цилиндры (керны) диаметром от 40 до 150 мм. Участки кирпичной или каменной кладки, с которых отбирали образцы для испытаний, должны быть полностью восстановлены для обеспечения исходной прочности конструкций.

3.3.11. Для испытания растворов, отобранных из кирпичной кладки, изготовляют кубы с ребром от 20 до 40 мм, составленные из двух пластин раствора, склеенных гипсовым раствором. Образцы испытывают на сжатие с использованием стандартного лабораторного оборудования. Определение прочности кирпича и камней производится в соответствии с требованиями ГОСТ 8462, раствора - ГОСТ 5802 или СН 290-74. Значения масштабных коэффициентов следует определять в соответствии с требованиями ГОСТ 10180.

3.3.12. Поверочные расчеты несущей способности каменных и армокаменных конструкций производятся в соответствии со СНиП II-22 с учетом фактических физико-технических характеристик материалов, полученных в результате инструментальных натурных обследований и лабораторных испытаний.

3.4. Обследование металлических конструкций

3.4.1. Задачами обследования металлических конструкций являются:

  • · определение технического состояния конструкций по внешним признакам;
  • · оценка коррозионных повреждений стальных конструкций;
  • · обследование сварных, заклепочных и болтовых соединений;
  • · определение качества стали конструкций.

Определение технического состояния конструкций по внешним признакам

3.4.2. Дефекты и повреждения стальных конструкций в зависимости от причин, их вызывающих, можно систематизировать на следующие группы:

1. Повреждения от силовых воздействий (статических и динамических) - разрывы, потеря устойчивости, трещины, ослабление соединений и т.п.

2. Повреждения от механических воздействий - вмятины, прогибы, искривления, истирание и др.

3. Повреждения от температурных воздействий - коробление и разрушение при высоких температурах, хрупкие трещины при отрицательных температурах.

4. Повреждения (коррозия) от химической агрессии электрохимических и физико-химических воздействий.

Оценка степени влияния конкретных повреждений производится по допускаемым отклонениям на соответствующие дефекты, регламентированные СНиП II-23, СНиП 3.03.01 и др.

3.4.3. Оценка технического состояния конструкций по внешним признакам производится на основе определения следующих факторов:

  • · геометрических размеров конструкций и их сечений; наличия разрывов элементов конструкций; наличия искривлений элементов;
  • · состояния антикоррозионных защитных покрытий; дефектов и механических повреждений;
  • · состояния сварных, болтовых и заклепочных соединений; степени и характера коррозии элементов и соединений;
  • · отклонения элементов от проектного положения (расстояния между осями ферм, прогонов, отметок опорных узлов и ригелей и т.п.);
  • · прогибов и деформаций.

3.4.4. Определение геометрических параметров конструкций и их сечений производится путем непосредственных измерений по рекомендациям п. 3.1. При этом фиксируются все отклонения от их проектного положения.

3.4.5. Толщина элементов измеряется штангенциркулем с точностью до 0,05 мм; толщина элементов, имеющих доступ с одной стороны, измеряется с помощью ультразвуковых толщиномеров типа Кварц-6, Кварц-15; сечение сварных швов определяется с помощью шаблонов или снятием слепка пластиком, остальные размеры - с помощью стальной линейки и рулетки.

Для измерения толщины листа в слабо напряженной зоне может быть высверлено отверстие диаметром до 50 мм.

3.4.6. Определение ширины и глубины раскрытия трещин в общем случае следует выполнять по рекомендациям п. 3.1. Выявление трещин в металлических конструкциях производится путем тщательного визуального осмотра с использованием лупы с 6 - 8-кратным увеличением или микроскопа МИР-2.

3.4.7. Признаками наличия трещин могут быть потеки ржавчины, выходящие на поверхность металла, и шелушение краски.

Для уточнения наличия трещин можно хорошо заточенным зубилом снимать небольшую стружку вдоль предполагаемой трещины, раздвоение которой говорит о наличии трещин.

Для выявления трещин можно пользоваться керосином. Для этого очищенная поверхность смачивается керосином, который проявляет очертание трещины.

3.4.8. Основными дефектами и повреждениями стальных конструкций, которые выявляются при визуальных натурных обследованиях, являются:

  • · в конструкциях - прогибы отдельных элементов и всей конструкции, винтообразность элементов, выпучивания, местные прогибы, погнутость узловых фасонок, коррозия основного металла и металла соединений, трещины;
  • · в сварных швах - дефекты формы шва (неполномерность, резкие переходы от основного металла к наплавленному, наплывы, неравномерная ширина шва, кратеры, перерывы) и дефекты структуры шва (трещины в швах или околошовной зоне, подрезы основного металла, непровары по кромкам и по сечению шва, шлаковые или газовые включения или поры);
  • · в заклепочных соединениях - зарубки, смещение с оси стержней и маломерность головок, избыток или недостаток по высоте потайных заклепок, косая заклепка, трещиноватость или рябина заклепки, зарубки металла отжимкой, неплотные заполнения отверстий телом заклепки, овальность отверстий, смещение осей заклепок от проектного положения, подвижность заклепок, отрыв головок, отсутствие заклепок, неплотное соединение пакета.

3.4.9. Помимо указанного в конструкциях из алюминиевых сплавов выявляются места их контакта с коррозионно-активным материалом.

3.4.10. Оценка категории технического состояния стальных конструкций по внешним признакам приводится в таблице (приложение 3).

Оценка коррозионных повреждений стальных конструкций

3.4.11. При оценке технического состояния стальных конструкций, пораженных коррозией, прежде всего необходимо определить вид коррозии и ее качественную и количественную характеристики.

Различают следующие основные виды коррозии стальных конструкций:

  • · сплошная - характеризуется относительно равномерным распределением коррозии по всей поверхности;
  • · пятнами - характеризуется небольшой глубиной проникновения коррозии по сравнению с поперечными размерами поражений;
  • · язвенная - характеризуется появлениями на поверхности металла отдельных или множественных повреждений, глубина и поперечные размеры которых (от долей миллиметра до нескольких миллиметров) соизмеримы;
  • · точечная (питтинговая) - представляет собой разрушение в виде отдельных мелких (не более 1 - 2 мм в диаметре) и глубоких (глубина больше поперечных размеров) язвочек;
  • · межкристаллическая - характеризуется относительно равномерным распределением множественных трещин на больших участках элементов (глубина трещин обычно меньше, чем их размеры на поверхности).

К качественным характеристикам коррозии относятся плотность, структура и химический состав продуктов коррозии. Качественные характеристики определяют путем лабораторных исследований продуктов коррозии.

К количественным показателям коррозионных поражений относятся их площадь, глубина коррозионных язв, величина потери сечения, скорость коррозии.

3.4.12. Поверхность элементов конструкций, подлежащих обследованию, необходимо очистить от пыли, грязи, жировых загрязнений, легко отслаивающихся старых покрытий и продуктов коррозии. Поверхности элементов в плоскостях, в которых проводят инструментальные измерения, необходимо очищать до металлического блеска механическими щетками, а затем мелкой шлифовальной шкуркой.

3.4.13. Площадь коррозионных поражений с указанием зоны их распространения выражают в процентах площади поверхности конструкций. Толщина элементов, поврежденных коррозией, замеряется не менее чем в трех сечениях по длине элемента. В каждом проводится не менее трех замеров. При сплошной коррозии толщина элементов измеряется с помощью штангенциркулей, микрометров или механических толщиномеров. Толщина замкнутых профилей определяется с помощью ультразвуковых толщиномеров.

3.4.14. При язвенной коррозии, а также при наличии питтингов глубину коррозионных язв измеряют с точностью 0,1 мм с помощью измерительных скоб.

3.4.15. Величина потери сечения выражается в процентах начальной толщины. В качестве начальной толщины элемента принимается его толщина в местах, не поврежденных коррозией, или, при отсутствии таких мест, по номинальным данным, приведенным в проекте или в сортаменте.

Для определения величины потери сечения в нескольких местах по длине и по сечению элемента микрометром или штангенциркулем с точностью до 0,05 мм измеряется его толщина. Разность между начальной и измеренной толщинами, выраженная в процентах, дает среднестатическую величину потери сечения.

Косвенную величину коррозионных потерь можно определить путем измерения толщины слоя продуктов коррозии. Величина коррозионных потерь с одной стороны элемента приближенно равна 1/3 толщины слоя окислов.

3.4.16. Для оценки состояния лакокрасочных покрытий необходимо обращать внимание на изменение цвета, размягчение и охрупчивание, наличие признаков шелушения, отслаивание, образование сыпи и пузырей, наличие или отсутствие продуктов коррозии на поверхности покрытия или под ним.

Адгезию покрытия определяют методом решетчатого надреза по ГОСТ 15140. Толщину покрытия измеряют толщиномерами ИТП-1 или МТ-300, а сплошность - дефектоскопами ЛКД-1 или ЛД2. Защитные свойства лакокрасочных покрытий оценивают по ГОСТ 6992 или ГОСТ 9.407.

3.4.17. Оценку защитных свойств металлических покрытий производят путем сопоставления фактического состояния покрытий с требованиями ГОСТ 9.301 и ГОСТ 9.302.

Стойкость металлов определяется при равномерной коррозии средней скоростью разрушения, мм/год, при неравномерной коррозии - глубиной проникновения отдельных коррозионных разрушений (язв), мм/год.

3.4.18. При обследованиях конструкций из высокопрочных термообработанных сталей, а также конструкций, работающих при высоких или пониженных температурах, используются металлографические методы исследования коррозии, которые позволяют выявить межкристаллические или внутрикристаллические коррозионные поражения и их конфигурацию.

3.4.19. Если работы по обследованию конструкций особо ответственных объектов проводят в течение нескольких лет, то рекомендуется включить в программу обследований проведение натурных коррозионных испытаний по ГОСТ 9.909 и ГОСТ 6992 образцов из материалов, соответствующих материалам обследуемых конструкций, и из более коррозионно-стойких материалов, которые можно использовать при замене конструкций, а также образцов с защитными покрытиями, соответствующими примененным для обследованных конструкций, и с более стойкими покрытиями. Условия испытаний образцов должны соответствовать наиболее жестким условиям, в которых эксплуатируются конструкции данного вида.

Обследование сварных, заклепочных и болтовых соединений

3.4.20. Обследование сварных соединений является наиболее ответственной операцией, так как сварной шов и околошовная зона могут быть наиболее вероятными очагами возникновения коррозии и трещин.

3.4.21. Обследование сварных швов включает следующие операции:

  • · внешний осмотр с целью обнаружения повреждений после очистки от грязи;
  • · определение размеров катетов швов. Для этого применяются: универсальные шаблоны, а также скобы для измерения толщины швов, снятые слепки и измерение с помощью угловой линейки. Длина сплошных и прерывистых швов измеряется линейкой.

3.4.22. Скрытые дефекты швов обнаруживаются с помощью простукивания шва молотком весом 0,5 кг, при этом доброкачественный шов издает такой же звук, как и основной металл; глухой звук указывает на наличие дефекта.

На участке шва с предполагаемым скрытым дефектом производятся контрольное высверливание и травление отверстий 10 - 12 %-ным водным раствором двойной соли хлорной меди и алюминия. Наплавленный металл при этом темнеет, и на темном фоне просматриваются дефекты (непровар, шлаковые включения и т.п.). Диаметр сверла принимается на 2 - 3 мм больше ширины шва. Эта операция производится при необходимости выявления глубины непровара и внутренних повреждений швов.

3.4.23. При необходимости более тщательного исследования внутренних повреждений сварных швов и внутренних трещин элементов металлоконструкций следует применять инструментальные методы контроля: ультразвуковой, рентгеновский, электромагнитный и др.

3.4.24. Выявление повреждений заклепочных соединений производится их внешним осмотром и простукиванием.

Контроль состояния заклепок и болтов отстукиванием осуществляется молотком массой 0,3 - 0,5 кг на длинной рукоятке. При ударе слабая заклепка или болт издает глухой дребезжащий звук, а приложенный к ним палец ощущает дрожание.

3.4.25. Неплотность соединений, подвижность заклепок обнаруживаются при отстукивании заклепок молотком.

Ослабление заклепки обнаруживается также по ржавым подтекам из-под головки и по венчикам пыли вокруг нее. Неплотности прилегания головки к пакету и неплотности элементов в пакете контролируются с помощью набора щупов толщиной от 0,2 до 0,5 мм.

3.4.26. Высокопрочные болты не простукиваются. По внешнему виду они отличаются от обычных обязательным наличием шайб под каждой головкой.

Контроль узловых соединений, выполненных на высокопрочных болтах, производится в соответствии со следующими требованиями:

  • · разболчивание соединений не допускается; в затянутых на проектное усилие болтах концы их должны быть заподлицо с поверхностью гаек или выступать за нее;
  • · контроль натяжения болтов может осуществляться закручиванием. В случае нанесения рисок при монтаже на металле и на гайке контроль может осуществляться визуально по положению рисок;
  • · контроль натяжения по моменту закручивания производится тарировочным ключом, с помощью которого к гайке или головке болта прикладывается крутящий момент, необходимый для того, чтобы повернуть гайку или головку болта на 5° в направлении затяжки;
  • · тарировочным ключом проверяется 10 % болтов общего количества их в узле, но не менее двух;
  • · при контроле затяжки болта крутящий момент должен превышать момент, обеспечивающий минимальное осевое натяжение, не менее чем на 5 % и не более чем на 10 % установленного расчетом болтовых соединений;
  • · если при приложении контрольного крутящего момента не наблюдается поворота гайки или болта, значит, болты соединения имеют достаточное осевое натяжение;
  • · если при приложении контрольного момента гайка или болт проворачивается раньше его достижения, то следует осуществить контроль всех высокопрочных болтов данного соединения.

Определение качества стали конструкций

3.4.27. При натурных обследованиях важным является определение качества стали конструкций, проводимое путем механических испытаний образцов, химического и металлографического их анализа.

3.4.28. Испытание материалов стальных конструкций производится:

  • · при отсутствии сертификатов или недостаточности имеющихся в них данных;
  • · при обнаружении в элементах конструкций повреждений, особенно в виде трещин;
  • · если установленная по сертификатам и чертежам марка стали не соответствует требованиям современных норм.

3.4.29. При лабораторных испытаниях, как правило, определяют следующие показатели: механические свойства, пределы пропорциональности, упругости, текучести, временное сопротивление, истинное сопротивление разрыву, относительное удлинение и относительное сужение после разрыва.

Для конструкций, работающих на динамические нагрузки, обязательно проводят исследование ударной вязкости стали в соответствии с ГОСТ 9454. Ударную вязкость определяют при температурах +20, -20, -40, -70 °С. Температуру испытания устанавливают в зависимости от требований нормативных документов для конструкций данного вида и климатического региона.

При механических испытаниях образцов следует руководствоваться указаниями ГОСТ 1497, ГОСТ 9454 и СНиП II-23.

3.4.30. Отбор образцов для механических испытаний производится с ненагруженных или малонапряженных участков конструкций путем выпиливания металлорежущим инструментом.

Отбор заготовок для механических испытаний производится отдельно для каждой партии. К одной партии принадлежат элементы одного вида проката (лист, уголок, двутавры и т.д.), одинаковые по номерам, толщинам, маркам стали и входящие в состав однотипных конструкций (ферм, подкрановых балок, колонн и т.д.), одного периода поставки для изготовления.

Количество проб и образцов на каждую партию должно быть: при испытании на растяжение и на ударную вязкость - не менее 3 из каждого элемента; количество образцов из одного металла не менее 2 и от всей партии не менее 6.

Отбор образцов производят: для листовой стали - поперек направления проката, сортовой и фасонной - вдоль направления проката.

3.4.31. Химическим анализом определяют химический состав стали, металлографическим - структуру стали, наличие и характер включений и микротрещин в соответствии с указаниями ГОСТ 10243, ГОСТ 5639. Химические и металлографические анализы производятся специализированными лабораториями.

На основании проведенных лабораторных испытаний стали определяют ее марку в соответствии с требованиями соответствующих ГОСТов и СНиП II-23.

3.4.32. Отбор образцов для химического анализа производится высверливанием. Поверхность металла перед отбором образцов зачищается до металлического блеска. Сверление производят в нескольких местах одного профиля, при этом режим сверления должен быть таким, чтобы стружка не имела цветов побежалости. Общий вес стружки для химического анализа должен составлять 50 - 100 г.

3.4.33. Отбор образцов для металлографического анализа производится с участков конструкций, где имеется опасность питтингоной коррозии, усталостных разрушений, изменений структуры металла, путем выпиливания. При этом должны соблюдаться меры по предотвращению нарушения структуры стали.

3.4.34. Размеры заготовок должны обеспечивать возможность изготовления пропорциональных образцов для испытаний в соответствии с ГОСТ 1497 и ГОСТ 7564.

При выпиливании минимальные размеры заготовок для изготовления плоских образцов из проката толщиной 8 - 10 мм составляют: длина - 205 - 220 мм, ширина - 30 - 35 мм. Допускается вырезание заготовок длиной 60 - 70 мм и шириной 12 - 15 мм, из которых изготавливаются цилиндрические образцы с d0 = 10 мм и начальной l0 = 10 мм.

В случае вырезания образцов автогеном со стороны линий среза должны оставаться припуски не менее 20 мм при толщине элемента до 60 мм и не менее 30 мм при большей толщине.

3.4.35. Испытание на растяжение производится по ГОСТ 1497 на плоских образцах с записью диаграмм растяжения. Предел текучести определяется по диаграмме.

Скорость перемещения захвата, мм/мин, при испытании до предела текучести не более 0,01, за пределом текучести - не более 0,2 длины расчетной части образца. Предпочтительными являются короткие образцы с расчетной длиной l0 = 5,56, где F0 - площадь поперечного сечения образца.

3.4.36. По результатам испытания на растяжение устанавливается соответствие применяемого в конструкциях и указанного в проектной документации класса стали. В случае если значение предела текучести или временного сопротивления ниже указанного в ГОСТе, сталь переводится в более низкий класс.

3.4.37. Пластичность стали оценивается по величине относительного удлинения. При полученных значениях относительного удлинения ниже установленных в нормах или соответствующего класса прочности стали следует обратить внимание на возможность появления хрупких трещин, особенно в зоне сварных соединений и повышенной концентрации напряжений.

3.4.38. Склонность стали к хрупкому разрушению выявляется по результатам испытаний на ударную вязкость. При неудовлетворительных результатах испытаний на ударную вязкость рекомендуется провести повторную оценку ударной вязкости на удвоенном числе образцов. Результаты повторных испытаний являются окончательными.

В случае если повторные испытания дадут неудовлетворительные результаты, ставится вопрос о необходимости усиления или замены конструкции.

3.4.39. Допускается определять механические свойства стали неразрушающими методами с корректировкой данных на основе контрольных лабораторных испытаний не менее трех образцов для каждого вида профиля.

3.4.40. Результаты обследований заносят в журнал, в котором указываются: наименование предприятия, цеха, отделения, вид конструкции и номера использованных чертежей и схем, места отбора проб металла и продуктов коррозии, измерений сечения, высверливаний и т.п. факторы обследований.

3.4.41. Выявленные фактические характеристики конструкций и их элементов сопоставляются с требованиями нормативных документов - СНиП II-23, других нормативных документов.

3.4.42. На основании результатов обследований производятся расчеты несущей способности элементов и конструкций в целом с целью разработки рекомендаций по дальнейшей их эксплуатации и восстановления их несущей способности и эксплуатационной надежности.

3.5. Обследование деревянных конструкций

Особенности эксплуатационных качеств деревянных конструкций

3.5.1. Древесина является эффективным строительным материалом, однако имеет ряд отрицательных свойств: неоднородность строения и пороки (сучки, косослой и др.), быстрое увлажнение, набухаемость, низкая огнестойкость, быстрое разрушение грибами и жучками. Поэтому обеспечение долговечности деревянных конструкций требует выполнения ряда мероприятий при их строительстве и эксплуатации.

Основные требования, предъявляемые к древесине и деревянным конструкциям, регламентируются ГОСТ 16483.0, ГОСТ 16483.7, ГОСТ 9462, ГОСТ 9463, а также СНиП II-25.

При обследованиях деревянных конструкций следует различать особенности неклееных и клееных конструкций и требований к условиям их эксплуатации, так как стойкость клеевых соединений к циклическим температурно-влажностным и другим эксплуатационным воздействиям отличается от неклееных конструкций.

При оценке стойкости клеевых соединений к циклическим температурно-влажностным воздействиям следует руководствоваться указаниями ГОСТ 17580, водостойкости - ГОСТ 17005.

Основные признаки, характеризующие техническое состояние конструкций

3.5.2. Основными признаками, характеризующими техническое состояние деревянных конструкций, являются: трещины, прогибы и деформации, прочностные показатели, влажностное состояние, биоповреждение (грибами и жуками), коррозия древесины (для конструкций, эксплуатируемых в условиях агрессивных сред), коррозия металлических накладок, скоб, хомутов, болтов и др.

3.5.3. Прогибы и деформации элементов деревянных конструкций определяются по методике и средствами, изложенными в разд. 3.1 настоящей методики.

Прогибы элементов деревянных конструкций зданий и сооружений не должны превышать величин, приведенных в таблице 3.7.

Таблица 3.7

№ п. п. Элементы конструкций Предельные прогибы в долях пролета, не более
1 Балки междуэтажных перекрытий 1/250
2 Балки чердачных перекрытий 1/200
3 Покрытия (кроме ендов):
прогоны, стропильные ноги 1/200
балки консольные 1/150
фермы, клееные балки (кроме консольных) 1/300
плиты 1/250
обрешетки, настилы 1/150
4 Несущие элементы ендов 1/400
5 Панели и элементы фахверка 1/250
Примечания: 1. При наличии штукатурки прогиб элементов перекрытий только от длительной временной нагрузки не должен превышать 1/350 пролета. 2. При наличии строительного подъема предельный прогиб клееных балок допускается до 1/200 пролета.

3.5.4. При обследовании деревянных конструкций необходимо особое внимание уделять эффективности мероприятий:

  • · по защите от непосредственного увлажнения атмосферными осадками, грунтовыми и талыми водами, производственными водами и др.;
  • · по предохранению древесины конструкций от промерзания, капиллярного и конденсационного увлажнения и по созданию осушающего температурно-влажностного режима окружающей воздушной среды (наличие естественной и принудительной вентиляции помещения, устройство продухов, аэраторов и др.);
  • · по противопожарной защите;
  • · по защите от воздействия гнилостных грибков и насекомых-древоточцев.

3.5.5. Условиями, способствующими развитию дереворазрушающих грибов, являются:

  • · влажность древесины - более 25 %;
  • · температура - от минус 3 до +40 °С;
  • · застойный воздух (скорость движения воздуха менее 0,001 м/с);
  • · наличие грибковых спор.

Признаками поражения деревянных конструкций дереворазрушающими грибами являются:

  • · спертый грибной запах в помещении; наличие образований на поверхности конструкций;
  • · изменение цвета конструкций (побурение);
  • · потеря прочности, высыхание, растрескивание, глухой звук при простукивании конструкций.

Признаками поражения деревянных конструкций жуками-древоточцами являются:

  • · наличие летных отверстий (размером 0,5 - 0,6 мм) и выпадение из них бурой муки;
  • · глухой звук при простукивании;
  • · наличие жуков обнаруживается на слух с помощью стетоскопа.

3.5.6. Для определения вида гриба и степени поражения конструкций требуется микроскопическое исследование образцов древесины в специализированных лабораториях. Образцы для анализа размером 15 ´ 15 ´ 5 мм отбирают с сохранением грибных образований.

3.5.7. Участки древесины, пораженные грибками и жуками-точильщиками, вырезаются и сжигаются, после чего конструкция усиливается антисептированной древесиной или специальными металлическими протезами.

3.5.8. Влажностное состояние элементов деревянных конструкций определяют путем отбора образцов с размером 15 ´ 15 ´ 5 мм и лабораторных испытаний по методике, изложенной в разделе 3.6.1 настоящей методики. При этом температура сушки в сушильных шкафах должна быть не более 60 °С. Определение влажности древесины следует производить с учетом требований ГОСТ 16483.7.

3.5.9. Оценка степени коррозии металлических накладок, скоб хомутов производится по указаниям раздела 3.4. При значительном повреждении указанных металлических элементов коррозией прочность соединений оценивается с учетом этого фактора.

3.5.10. Прочностные характеристики древесины можно установить путем лабораторных испытаний вырезанных из конструкций образцов или по виду материала (сосна, ель, лиственница, пихта и др.), пользуясь их нормативными характеристиками по СНиП II-25-80, а также ультразвуковым прибором типа УХ-14П.

При лабораторных испытаниях физико-технические характеристики древесины следует определять, руководствуясь указаниями ГОСТ 16483.0, 16483.3.

3.5.11. Для определения технического состояния элементов деревянных конструкций необходимо кроме вышеотмеченных факторов обратить внимание на состояние:

  • · узлов опирания несущих деревянных конструкций на фундаменты, каменные стены, стальные и железобетонные колонны и другие элементы конструкций с более теплопроводными или влагопроводными свойствами (при непосредственном их контакте). Узлы должны быть изолированы через гидроизоляционные прокладки;
  • · деревянных подкладок (подушек), на которых устанавливаются опорные части несущих конструкций. Подкладки должны быть из антисептированной древесины преимущественно лиственных пород.

3.5.12. Проверку состояния деревянных конструкций (полов, перегородок, подшивки потолков, опор балок и ферм) производят путем выборочных вскрытий.

В междуэтажных перекрытиях вскрытие осуществляют на участках между балками на площади не менее 0,5 м2. На накатах убирают засыпку, а с поверхности перегородок и потолков - штукатурку на участках 30 ´ 30 см. Вскрытие целесообразно производить также и в местах прохождения водопроводных и канализационных труб.

Оценка технического состояния конструкций

3.5.13. Результаты обследований и определений фактических характеристик деревянных конструкций и их элементов сопоставляются с требованиями СНиП 11-25-80 и других нормативных документов.

3.5.14. Внешние признаки, характеризующие состояние деревянных конструкций по пяти категориям состояния, приводятся в таблице (приложение 4).

3.5.15. Фактическая влажность материалов стеновых конструкций сопоставляется с данными таблицы 3.8 и при их превышении разрабатываются рекомендации по снижению эксплуатационной влажности конструкций.

На основании результатов обследований производятся поверочные расчеты несущих конструкций по предельным состояниям и разрабатываются рекомендации по дальнейшей их эксплуатации и восстановлению их несущей способности и эксплуатационной надежности.

Таблица 3.8 - Допустимые значения влажности материалов деревянных стен

Наименование материала Плотность, кг/м3 Допустимая влажность, %
к началу зимнего периода к концу зимнего периода
Дуб 700 24 30
Сосна 600 20 25
Береза 500 18 22
Осина 400 16 20

3.6. Обследование ограждающих конструкций здания

3.6.1. Теплотехнические обследования ограждающих конструкций

Цель и задачи теплотехнических обследований

3.6.1.1. Теплотехнические требования, предъявляемые к ограждающим конструкциям зданий, регламентируются СНиП II-3 и зависят от вида ограждения (стена, покрытие и др.), нормируемых параметров производственной среды (микроклимата), климатических условий района и функционального назначения здания.

3.6.1.2. Целью теплотехнических обследований ограждающих конструкций является выявление их фактических теплозащитных качеств и их соответствия современным нормативным требованиям, которые в последние годы существенно изменились в связи с проблемой экономии и рационального использования энергетических ресурсов.

3.6.1.3. При определении теплотехнических качеств ограждающих конструкций могут устанавливаться:

  • · температурные поля на внутренних поверхностях ограждающих конструкций, на участках теплопроводных включений, узлов примыканий внутренних и наружных стен, стыковых соединений с целью выявления зон с пониженной температурой, где возможно образование конденсата на поверхности конструкций;
  • · характер изменения температурного поля и коэффициент теплотехнической однородности конструкций;
  • · термическое сопротивление конструкций Rк, м2∙°С/Вт, коэффициент теплоотдачи внутренней aв, м2 ∙°С/Вт, и наружной aн, м2∙°С/Вт, поверхностей;
  • · динамика влажностного режима конструкций в разные сезоны года, установление зоны конденсации влаги и степени влагонакопления в холодный период года, определение влажностного состояния стыковых соединений;
  • · воздухопроницаемость ограждающих конструкций.

Измерение температур

3.6.1.4. При обследованиях гражданских и производственных зданий и зависимости от рассматриваемых задач производятся измерения температур газовых и жидкостных сред, сыпучих и твердых тел. Диапазон измерения температур - от минус 70 до +1600 °С.

3.6.1.5. Для измерений используются контактные и бесконтактные термометры. К контактным относятся жидкостные и биометаллические термометры, электрические и полупроводниковые термометры сопротивления, термопары. К бесконтактным термометрам относятся инфракрасные термометры, пиранометры, а также тепловизоры.

3.6.1.6. Для измерения показаний медных термометров сопротивления применяют мосты постоянного тока и коммутационные устройства. Для непрерывной записи температур используются автоматические самописцы.

3.6.1.7. Термопары применяются для измерения температур газовых и жидких сред, сыпучих и твердых тел. Применяются преимущественно хромель-копелевые (ХК), хромель-алюмелевые (ХА) и медь-константановые (ТМК) термопары.

3.6.1.8. При наличии источников излучения термометры необходимо экранировать, обеспечивая около них свободное движение воздуха. Экраны целесообразно выполнять из фольги или из аналогичных материалов.

3.6.1.9. Для изготовления термопар используется термоэлектродная проволока диаметром 0,1 - 1 мм в хлорвиниловой изоляции (максимальная температура измерения +150 °С). Для измерения более высоких температур используется термоэлектродная проволока диаметром 1 - 2 мм в термостойкой асбестовой или аналогичной изоляции.

3.6.1.10. Изготовление спаев термопар производится путем пайки или сварки. При сварке необходимо, чтобы дуга загоралась на обоих электродах одновременно. При качественной сварке на конце скрутки образуется шарик диаметром 1 - 2 мм. Режим сварки подбирается пробным путем.

Подготовленные термопары, предназначенные для измерения температур до 150 °С, напаиваются на медные пластинки диаметром 15 мм толщиной 0,4 - 0,6 мм.

3.6.1.11. В качестве измерительных (вторичных) приборов при измерениях температур термопарами применяются потенциометры типа ПП-1, КП-59 и самопишущие потенциометры типа ЭПП-09, ПОР и др.

Измерения температур производятся обычно дифференциальными термопарами. Их свободный спай помещается в термос с тающим льдом, который приготавливается из дистиллированной воды. При невозможности приготовить лед свободный спай погружается в сосуд с водой, температура которой в момент измерения определяется с помощью ртутного термометра. При этом определение температуры рабочего спая производится с соответствующей корректировкой величины измеряемой ЭДС.

3.6.1.12. Современные бесконтактные термометры различных модификаций находят широкое применение на практике. Для измерения температур в диапазоне от 700 до 1800 °С применяется оптический пиранометр ОПИР-017, при диапазоне температур от минус 18 до +400 °С применяются бесконтактные термометры типа «Thermopoint 2-4» и другие аналогичные термометры.

3.6.1.13. Измерение температурного поля ограждающих конструкций производится тепловизорами различных модификаций, например тепловизорами марки АТП-44-П (ГОСТ 22629), марки «AGA Thermovision-750» или «Thermovision-470».

Измерение солнечной радиации

3.6.1.14. Цель наблюдения над солнечной радиацией заключается в определении солнечной лучистой энергии, падающей на наружные ограждения и через светопроемы проникающей внутрь помещений.

3.6.1.15. Измерение интенсивности солнечной радиации производится пиранометром Янишевского в комплекте с гальванометром или потенциометром. При замерах суммарной солнечной радиации пиранометр устанавливают без теневого экрана, при замерах же рассеянной радиации - с теневым экраном. Прямая солнечная радиация вычисляется как разность между суммарной и рассеянной радиацией.

При определении интенсивности падающей солнечной радиации на ограждение пиранометр устанавливают на него так, чтобы воспринимаемая поверхность прибора была строго параллельна поверхности ограждения. При отсутствии автоматической записи радиации замеры следует производить через 30 мин в промежутке между восходом и заходом солнца.

3.6.1.16. Радиация, падающая на поверхность ограждения, полностью не поглощается. В зависимости от фактуры и окраски ограждения некоторая часть лучей отражается. Отношение отраженной радиации к падающей, выраженное в процентах, называется альбедо поверхности и измеряется альбедометром П.К. Калитина в комплекте с гальванометром или потенциометром.

При радиационных наблюдениях альбедометр устанавливают таким образом, чтобы рабочая поверхность его была параллельна поверхности ограждения, альбедо которого определяется.

Методика измерений сводится к последовательному измерению величины падающей радиации Jпад и отраженной радиации Jотр. При измерении падающей радиации воспринимающая поверхность альбедометра должна быть установлена на поверхности ограждения или по возможности на наименьшем расстоянии, а при измерении отраженной радиации - на расстоянии 0,5 м от поверхности ограждения. После замеров падающей радиации альбедометр поворачивают на 180° и производят замер отраженной радиации. Замеры повторяют 3 - 5 раз с интервалом 5 мин и по ним определяют среднее значение альбедо поверхности.

Для большей точности наблюдения следует проводить при ясном небе и при интенсивном солнечном облучении ограждения.

Измерение тепловых потоков

3.6.1.17. В практике теплотехнических исследований ограждающих конструкций измерения величин тепловых потоков, проходящих через них, позволяет определить теплозащитные свойства обследуемых ограждений.

Для измерения тепловых потоков часто применяют тепломеры, основанные на принципе дополнительной стенки.

3.6.1.18. Если коэффициент теплопроводности дополнительной стенки известен, то для определения теплового потока достаточно измерить разность температур на ее поверхности. Тепловой поток в этом случае определяют по формуле

,

где λ   - теплопроводность дополнительной стенки, Вт/(м ∙ °С);

δ   - толщина стенки, м;

Dt - падение температуры на дополнительной стенке при прохождении теплового потока.

3.6.1.19. Если коэффициент теплопроводности дополнительной стенки не известен, то производят тарировку тепломера при помощи другого тепломера, характеристика которого заранее известна.

3.6.1.20. При стационарных условиях теплопередачи и сравнительно невысоких температурах величина теплового потока q определяется на основе измерения термоЭДС при помощи потенциометра

q = kE,

где q - тарировочный коэффициент тепломера;

E - величина измеренной ЭДС.

3.6.1.21. Тепломер, установленный на наружной поверхности ограждающей конструкции, показывает тепловой поток, отдаваемый наружной поверхностью ограждения наружному воздуху, а тепломер, установленный на внутренней поверхности ограждения, показывает тепловой поток, проходящий через внутренние поверхности ограждения.

В стационарных условиях теплопередачи, когда теплосодержание ограждающей конструкции не меняется, тепловой поток, входящий в ограждение, равен тепловому потоку, выходящему из ограждения. В нестационарных условиях теплопередачи, наблюдаемых в натурных условиях это равенство не соблюдается. Недооценка этого факта может привести к грубым ошибкам при экспериментальном определении термического сопротивления конструкции.

Определение теплозащитных качеств ограждающих конструкций

3.6.1.22. Теплозащитные качества ограждающих конструкций характеризуются приведенным сопротивлением теплопередаче R0 и термическим сопротивлением Rк. Их экспериментальное определение основывается на принципе стационарного режима теплопередачи, при котором тепловой поток, проходящий через любое сечение конструкции, перпендикулярное потоку, постоянен. В этом случае имеет место равенство:

;

;

; ; ,

где q -     тепловой поток, Вт/м2;

Riк -     термическое сопротивление i-го слоя конструкции, м2∙°С/Вт;

li -     толщина i-го слоя, м;

λiк -     коэффициент теплопроводности i-го слоя конструкции, Вт/м∙°С;

aв -     коэффициент тепловосприятия внутренней поверхности ограждения, Вт/(м2∙°С);

aн -     коэффициент теплоотдачи наружной поверхности ограждения, Вт/(м2∙°С);

Rв -     сопротивление тепловосприятию внутренней поверхности ограждения, м2∙°С/Вт;

Rн -     сопротивление теплоотдаче наружной поверхности ограждения, м2∙°С/Вт;

tв -     температура внутренней поверхности, °С;

tн -     температура наружной поверхности, °С.

3.6.1.23. Измеряя величину теплового потока q1, разность температур внутреннего и наружного воздуха Dt и разность температур внутренней и наружной поверхности ограждения Dt, определяем термическое сопротивление конструкции по формуле

,

где Dt = tв - tн - разность температур внутреннего и наружного воздуха, °С;

Dt = tв - tн - разность температур внутренней и наружной поверхностей ограждения, °С;

q1 - замеренный тепловой поток, Вт/м2∙°С/Вт;

R - термическое сопротивление тепломера, м2∙°С/Вт.

Тепловой поток, замеренный тепломером q1, несколько отличается от действительного теплового потока q, проходящего через ограждающую конструкцию, так как тепломер является добавочным сопротивлением к исследуемому ограждению и, следовательно, замеренный тепловой поток оказывается несколько меньше действительного потока.

Второй член в формуле отражает влияние термического сопротивления тепломера. Величина истинного теплового потока в этом случае определяется из соотношения

.

Сопротивления теплоотдаче Rн и тепловосприятию Rв определяются по формулам:

;

.

Сопротивление теплопередаче конструкций

.

3.6.1.24. При экспериментальном определении величин R0 и Rк конструкции с тепловой инерцией D более 1,5 и при явно выраженном нестационарном режиме теплопередачи необходимо учитывать изменения теплосодержания ограждения в период проведения обследования.

При достаточной продолжительности натурных наблюдений (в пределах до 14 дней) влияние изменения теплосодержания ограждения сводится к минимуму, поскольку в этом случае температурная кривая наружного воздуха, как правило, охватывает несколько волн. Однако в тех случаях, когда наблюдения над тепловыми потоками ведутся непродолжительное время (1 - 2 дня), необходимо учитывать изменение теплосодержания ограждения.

Определение влажностного состояния ограждающих конструкций

3.6.1.25. При натурных обследованиях определение влажности материалов в зависимости от требуемой точности производится различными способами. Наиболее простым и достоверным способом является извлечение из конструкции при помощи шлямбуров пробы материала, помещаемой затем в специальные бюксы. Влажная проба материала непосредственно после извлечения из конструкции взвешивается, а затем высушивается нагреванием в сушильных шкафах до постоянного веса и снова взвешивается.

Массовая (весовая) влажность Wв, %, определяется по формуле

,

где Р1 и Р2 - масса (вес) пробы соответственно до и после высушивания.

При известной плотности материала g, кг/м3, объемная влажность Wоб вычисляется по формуле

.

3.6.1.26. Сушка отобранных проб производится в термостатах или сушильных шкафах, где температура поддерживается на уровне 105 °С для всех материалов, за исключением органических и гипсовых, для которых температура сушки должна быть не выше 60 - 70 °С.

3.6.1.27. При взвешивании проб на аналитических весах навеску следует брать массой не менее 2 г, а взвешивание производить с точностью до 0,001 г; при взвешивании на технических весах вес навески должен быть не менее 10 г при точности взвешивания до 0,01 г.

3.6.1.28. После извлечения из конструкций материала пробы немедленно помещают в бюксы и плотно закрывают крышкой во избежание их усушки до первого взвешивания.

В зимнее время пробы в бюксы укладывают на холоде и закрывают плотно крышкой, так как в теплом помещении на них образуется конденсат. Края крышек бюкс смазывают жиром, самоклеющей лентой или другим паронепроницаемым материалом.

3.6.1.29. Из кирпичных и шлакобетонных конструкций пробы, как правило, отбираются шлямбуром диаметром 8, 10, 12 мм, из деревянных - буром Пресслера.

При слоистых конструкциях пробы следует брать из каждого слоя.

3.6.1.30. В каменных сплошных стенах места взятия проб по сечению конструкции следующие: штукатурка внутренняя, поверхность стены под штукатуркой; в толще стены - через каждые 10 - 12 см; поверхность стены под наружной штукатуркой; штукатурка наружная. При наличии в стене утеплителя пробы берут и из него.

3.6.1.31. В настоящее время разработан диэлектрометрический метод определения влажности строительных материалов, изделий и конструкций. Он основан на корреляционной зависимости диэлектрической проницаемости материала от содержания влаги в нем при положительных температурах.

3.6.1.32. Измерение влажности производят при помощи электронного влагомера ВСКМ-12 или других влагомеров, отвечающих требованиям ГОСТ 21718.

3.6.1.33. Для проведения измерений влажности материала на его поверхности выбирают чистые ровные участки размером 300 ´ 300 мм, на которых не должно быть местных наплывов, вмятин и раковин глубиной более 3 мм и диаметром более 5 мм.

3.6.1.34. Количество участков устанавливают из расчета один участок на 1,5 м поверхности бетона. Температура поверхности бетона должна быть не более 40 °С.

3.6.1.35. Результаты измерений записывают в журнал, который должен содержать следующие данные:

  • · наименование материала;
  • · показания влагомера по результатам всех измерений;
  • · средняя влажность материала.

3.6.1.36. Результаты измерений влажности сопоставляют с требованиями СНиП II-3 или данными, приведенными в таблице 3.9, и на этой основе производят оценку влажностного состояния ограждающих конструкций.

Таблица 3.9 - Нормальная влажность некоторых материалов наружных ограждающих конструкций

№ п. п. Материал Плотность g, кг/м3 Влажность материала, %
массовая объемная
1 Красный кирпич в сплошных стенах 1800 1,5 2,7
2 Кирпич красный в стенах с воздушной прослойкой 1800 0,5 0,9
3 Кирпич силикатный 1900 2,5 4,8
4 Бетон тяжелый 2000 1,5 3,0
5 Шлакобетон 1300 3,0 3,9
6 Керамзитобетон 1000 6,0 6,0
7 Пенобетон в наружных стенах 700 10,0 7,0
8 Пеностекло 350 3,0 1,1
9 Штукатурка известково-песчаная 1600 1,0 1,6
10 Шлак топливный в засыпке 750 3,5 2,6
11 Минераловатные плиты 200 2,0 0,4
12 Дерево (сосна) 500 15 7,5
13 Фибролит цементный 350 15 5,2
14 Торфоплиты 225 20 4,5

Читать далее

Вернуться: тепловизионное обследование

Специалисты организации Независимая Экспертиза готовы помочь как физическим, так и юридическим лицам в определении различных видов оценки, экспертиз.

Если же после изучения этих разделов у Вас останутся нерешенные вопросы или же Вы захотите лично пообщаться с нашими специалистами или заказать тепловизионную экспертизу, всю необходимую для этого информацию можно получить в разделе "Контакты".

С нетерпением ждем Вашего звонка и заранее благодарим за оказанное доверие

Вернуться: экспертиза

Тепловизионная экспертиза проводится

г. Волгоград, ул. Иркутская, 7 (остановка ТЮЗ, отдельный вход с торца здания). 400074

Заключение «Независимой экспертизы» имеет статус официального документа доказательного значения и может быть использовано в суде.

Навигация:
© 2025 Независимая Экспертиза Волгоград. Все права защищены.
© 2004 - 2025 21 Век - Интернет агентство - Создание сайтов Волгоград.
Яндекс.Метрика